Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prospects for metal halide perovskite-based tandem solar cells

Abstract

Over the past decade, metal halide perovskite photovoltaics have been a major focus of research, with single-junction perovskite solar cells evolving from an initial power conversion efficiency of 3.8% to reach 25.5%. The broad bandgap tunability of perovskites makes them versatile candidates as the subcell in a tandem photovoltaics architecture. Stacking photovoltaic absorbers with cascaded bandgaps in a multi-junction device can potentially overcome the Shockley–Queisser efficiency limit of 33.7% for single-junction solar cells. There is now intense activity in developing tandem solar cells that pair perovskite with either itself or with a variety of mature photovoltaic technologies such as silicon and Cu(In,Ga)(S,Se)2 (CIGS). In this review, we survey recent advances in the field and discuss its outlook.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Introduction of tandem PVs and metal halide perovskites.
Fig. 2: Strategies towards high-performance perovskite-based front subcells.
Fig. 3: Strategies towards high-performance perovskite-based rear subcells.
Fig. 4: Demonstration of perovskite-based tandem solar cells.

References

  1. 1.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    ADS  Google Scholar 

  2. 2.

    Beard, M. C. Multiple exciton generation in semiconductor quantum dots. J. Phys. Chem. Lett. 2, 1282–1288 (2011).

    Google Scholar 

  3. 3.

    Knig, D. et al. Hot carrier solar cells: principles, materials and design. Phys. E 42, 2862–2866 (2010).

    Google Scholar 

  4. 4.

    Okada, Y. et al. Intermediate band solar cells: recent progress and future directions. Appl. Phys. Rev. 2, 021302 (2015).

  5. 5.

    De Vos, A. Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D 13, 839–846 (1980).

    ADS  Google Scholar 

  6. 6.

    Geisz, J. F. et al. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 5, 326–335 (2020).

    ADS  Google Scholar 

  7. 7.

    Barnett, A. M. The spectral p-n junction model for tandem solar-cell design. IEEE Trans. Electron Devices 34, 257–266 (1987).

    ADS  Google Scholar 

  8. 8.

    Brown, A. S. & Green, M. A. Detailed balance limit for the series constrained two terminal tandem solar cell. Phys. E 14, 96–100 (2002).

    Google Scholar 

  9. 9.

    Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019).

    ADS  Google Scholar 

  10. 10.

    Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    ADS  Google Scholar 

  11. 11.

    Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019).

    ADS  Google Scholar 

  12. 12.

    Xue, J. et al. Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film. J. Am. Chem. Soc. 141, 13948–13953 (2019).

    Google Scholar 

  13. 13.

    Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    ADS  Google Scholar 

  14. 14.

    Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Google Scholar 

  15. 15.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Google Scholar 

  16. 16.

    Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015).

    ADS  Google Scholar 

  17. 17.

    Jesper Jacobsson, T. et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 9, 1706–1724 (2016).

    Google Scholar 

  18. 18.

    Heo, J. H. & Im, S. H. CH3NH3PbBr3–CH3NH3PbI3 perovskite–perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv. Mater. 28, 5121–5125 (2016).

    Google Scholar 

  19. 19.

    McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    ADS  Google Scholar 

  20. 20.

    Beal, R. E. et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016).

    Google Scholar 

  21. 21.

    Han, Y. et al. Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv. Funct. Mater. 30, 1909972 (2020).

    Google Scholar 

  22. 22.

    Bush, K. A. et al. Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3, 428–435 (2018).

    Google Scholar 

  23. 23.

    Braly, I. L. et al. Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design. ACS Energy Lett. 2, 1841–1847 (2017).

    Google Scholar 

  24. 24.

    Correa-Baena, J. P. et al. Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 363, 627–631 (2019).

    ADS  Google Scholar 

  25. 25.

    Xu, J. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    ADS  Google Scholar 

  26. 26.

    Mao, W. et al. Light-induced reversal of ion segregation in mixed-halide perovskites. Nat. Mater. 20, 55–61 (2021).

    ADS  Google Scholar 

  27. 27.

    Jung, M., Ji, S. G., Kim, G. & Seok, S. I. L. Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 48, 2011–2038 (2019).

    Google Scholar 

  28. 28.

    Jeon, N. J. et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    ADS  Google Scholar 

  29. 29.

    Zhou, Y. et al. Manipulating crystallization of organolead mixed-halide thin films in antisolvent baths for wide-bandgap perovskite solar cells. ACS Appl. Mater. Interfaces 8, 2232–2237 (2016).

    Google Scholar 

  30. 30.

    Jaysankar, M. et al. Crystallisation dynamics in wide-bandgap perovskite films. J. Mater. Chem. A 4, 10524–10531 (2016).

    Google Scholar 

  31. 31.

    Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020).

    ADS  Google Scholar 

  32. 32.

    Rehman, W. et al. Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 10, 361–369 (2017).

    Google Scholar 

  33. 33.

    Hu, Y. et al. Understanding the role of cesium and rubidium additives in perovskite solar cells: trap states, charge transport, and recombination. Adv. Energy Mater. 8, 1703057 (2018).

    Google Scholar 

  34. 34.

    Dang, H. X. et al. Multi-cation synergy suppresses phase segregation in mixed-halide perovskites. Joule 3, 1746–1764 (2019).

    Google Scholar 

  35. 35.

    Duong, T. et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228 (2017).

    ADS  Google Scholar 

  36. 36.

    Chen, B. et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule 3, 177–190 (2019).

    Google Scholar 

  37. 37.

    Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Google Scholar 

  38. 38.

    Yu, Y. et al. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells. ACS Energy Lett. 2, 1177–1182 (2017).

    Google Scholar 

  39. 39.

    Kim, D. H. et al. Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 3, 1734–1745 (2019).

    Google Scholar 

  40. 40.

    Kim, D. et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020).

    ADS  Google Scholar 

  41. 41.

    Kim, J. et al. Amide-catalyzed phase-selective crystallization reduces defect density in wide-bandgap perovskites. Adv. Mater. 30, 1706275 (2018).

    ADS  Google Scholar 

  42. 42.

    Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

    ADS  Google Scholar 

  43. 43.

    Gharibzadeh, S. et al. Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019).

    Google Scholar 

  44. 44.

    Gharibzadeh, S. et al. 2D/3D heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four-terminal tandems with silicon and CIGS. Adv. Funct. Mater. 30, 1909919 (2020).

  45. 45.

    Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).

    ADS  Google Scholar 

  46. 46.

    Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    ADS  Google Scholar 

  47. 47.

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Google Scholar 

  48. 48.

    Tan, H. et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 3100 (2018).

  49. 49.

    Lin, Y.-H. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96–102 (2020).

    ADS  Google Scholar 

  50. 50.

    Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

    ADS  Google Scholar 

  51. 51.

    Zhou, Y. et al. Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance. Adv. Energy Mater. 7, 4–10 (2017).

    Google Scholar 

  52. 52.

    Luo, D. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018).

    ADS  Google Scholar 

  53. 53.

    Peng, J. et al. Interface passivation using ultrathin polymer-fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ. Sci. 10, 1792–1800 (2017).

    Google Scholar 

  54. 54.

    Jaysankar, M. et al. Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Lett. 4, 259–264 (2019).

    Google Scholar 

  55. 55.

    Bett, A. J. et al. Two-terminal perovskite silicon tandem solar cells with a high-bandgap perovskite absorber enabling voltages over 1.8 V. Prog. Photovoltaics Res. Appl. 28, 99–110 (2020).

    Google Scholar 

  56. 56.

    Lin, Y. et al. Matching charge extraction contact for wide-bandgap perovskite solar cells. Adv. Mater. 29, 1700607 (2017).

    Google Scholar 

  57. 57.

    Khadka, D. B., Shirai, Y., Yanagida, M., Noda, T. & Miyano, K. Tailoring the open-circuit voltage deficit of wide-band-gap perovskite solar cells using alkyl chain-substituted fullerene derivatives. ACS Appl. Mater. Interfaces 10, 22074–22082 (2018).

    Google Scholar 

  58. 58.

    Zuo, F. et al. Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Adv. Mater. 26, 6454–6460 (2014).

    Google Scholar 

  59. 59.

    Liao, W. et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138, 12360–12363 (2016).

    Google Scholar 

  60. 60.

    Ogomi, Y. et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014).

    Google Scholar 

  61. 61.

    Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).

    Google Scholar 

  62. 62.

    Noel, N. K. et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).

    Google Scholar 

  63. 63.

    Han, Q. et al. Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb-Sn low-bandgap perovskite solar cells. Sci. Bull. 64, 1399–1401 (2019).

    Google Scholar 

  64. 64.

    Gu, S. et al. Tin and mixed lead–tin halide perovskite solar cells: progress and their application in tandem solar cells. Adv. Mater. 32, 1907392 (2020).

    Google Scholar 

  65. 65.

    Kumar, M. H. et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122–7127 (2014).

    Google Scholar 

  66. 66.

    Lee, S. J. et al. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex. J. Am. Chem. Soc. 138, 3974–3977 (2016).

    Google Scholar 

  67. 67.

    Zong, Y., Zhou, Z., Chen, M., Padture, N. P. & Zhou, Y. Lewis-adduct mediated grain-boundary functionalization for efficient ideal-bandgap perovskite solar cells with superior stability. Adv. Energy Mater. 8, 1800997 (2018).

    Google Scholar 

  68. 68.

    Xu, X. et al. Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy 34, 392–398 (2017).

    Google Scholar 

  69. 69.

    Li, W. et al. Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A 4, 17104–17110 (2016).

    ADS  Google Scholar 

  70. 70.

    Li, F. et al. Trihydrazine dihydriodide-assisted fabrication of efficient formamidinium tin iodide perovskite solar cells. Sol. RRL 3, 1900285 (2019).

    Google Scholar 

  71. 71.

    Kayesh, M. E. et al. Enhanced photovoltaic performance of FASnI3-based perovskite solar cells with hydrazinium chloride coadditive. ACS Energy Lett. 3, 1584–1589 (2018).

    Google Scholar 

  72. 72.

    Tai, Q. et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chemie Int. Ed. 58, 806–810 (2019).

    Google Scholar 

  73. 73.

    Jokar, E. et al. Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci. 11, 2353–2362 (2018).

    Google Scholar 

  74. 74.

    Jokar, E., Chien, C. H., Tsai, C. M., Fathi, A. & Diau, E. W. G. Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31, 1804835 (2019).

    Google Scholar 

  75. 75.

    Shao, S. et al. Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8, 1702019 (2018).

  76. 76.

    Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    ADS  Google Scholar 

  77. 77.

    Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    ADS  Google Scholar 

  78. 78.

    Zhao, D. et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3, 1093–1100 (2018).

    ADS  Google Scholar 

  79. 79.

    Li, C. et al. Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin–lead halide perovskite solar cells. Adv. Energy Mater. 9, 1803135 (2019).

    Google Scholar 

  80. 80.

    Wang, F. et al. 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule 2, 2732–2743 (2018).

    Google Scholar 

  81. 81.

    Wei, M. et al. Combining efficiency and stability in mixed tin–lead perovskite solar cells by capping grains with an ultrathin 2D layer. Adv. Mater. 32, 1907058 (2020).

    Google Scholar 

  82. 82.

    Tong, J. et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    ADS  Google Scholar 

  83. 83.

    Chen, Z. et al. Stable Sn/Pb-based perovskite solar cells with a coherent 2D/3D interface. iScience 9, 337–346 (2018).

    ADS  Google Scholar 

  84. 84.

    Zhao, D. et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2, 17018 (2017).

    ADS  Google Scholar 

  85. 85.

    Yang, Z. et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10, 4498 (2019).

    ADS  Google Scholar 

  86. 86.

    Berry, J. J. et al. Perovskite photovoltaics: the path to a printable terawatt-scale technology. ACS Energy Lett. 2, 2540–2544 (2017).

    Google Scholar 

  87. 87.

    Bailie, C. D. et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ. Sci. 8, 956–963 (2015).

    Google Scholar 

  88. 88.

    Li, Z. et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8, 6797–6804 (2014).

    Google Scholar 

  89. 89.

    You, P., Liu, Z., Tai, Q., Liu, S. & Yan, F. Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 27, 3632–3638 (2015).

    Google Scholar 

  90. 90.

    Roldán-Carmona, C. et al. High efficiency single-junction semitransparent perovskite solar cells. Energy Environ. Sci. 7, 2968–2973 (2014).

    Google Scholar 

  91. 91.

    Della Gaspera, E. et al. Ultra-thin high efficiency semitransparent perovskite solar cells. Nano Energy 13, 249–257 (2015).

    Google Scholar 

  92. 92.

    Yang Michael, Y. et al. Multilayer transparent top electrode for solution processed perovskite/Cu(In,Ga)(Se,S)2 four terminal tandem solar cells. ACS Nano 9, 7714–7721 (2015).

    Google Scholar 

  93. 93.

    Chen, B. et al. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells. Adv. Energy Mater. 6, 1601128 (2016).

  94. 94.

    Werner, J. et al. Sputtered rear electrode with broadband transparency for perovskite solar cells. Sol. Energy Mater. Sol. Cells 141, 407–413 (2015).

    Google Scholar 

  95. 95.

    Fu, F. et al. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nat. Commun. 6, 8932 (2015).

    ADS  Google Scholar 

  96. 96.

    Kranz, L. et al. High-efficiency polycrystalline thin film tandem solar cells. J. Phys. Chem. Lett. 6, 2676–2681 (2015).

    Google Scholar 

  97. 97.

    Bush, K. A. et al. Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. 28, 3937–3943 (2016).

    Google Scholar 

  98. 98.

    Fu, F. et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat. Energy 2, 16190 (2017).

  99. 99.

    Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016).

    ADS  Google Scholar 

  100. 100.

    Leijtens, T. et al. Tin-lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustain. Energy Fuels 2, 2450–2459 (2018).

    Google Scholar 

  101. 101.

    Rajagopal, A. et al. Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 29, 1702140 (2017).

    Google Scholar 

  102. 102.

    Forgács, D. et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7, 1602121 (2017).

    ADS  Google Scholar 

  103. 103.

    Ávila, J. et al. High voltage vacuum-deposited CH3NH3PbI3-CH3NH3PbI3 tandem solar cells. Energy Environ. Sci. 11, 3292–3297 (2018).

    Google Scholar 

  104. 104.

    Palmstrom, A. F. et al. Enabling flexible all-perovskite tandem solar cells. Joule 3, 2193–2204 (2019).

    Google Scholar 

  105. 105.

    Yu, Z. et al. Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020).

    ADS  Google Scholar 

  106. 106.

    Mailoa, J. P. et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106, 121105 (2015).

    ADS  Google Scholar 

  107. 107.

    Albrecht, S. et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2016).

    Google Scholar 

  108. 108.

    Werner, J. et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. J. Phys. Chem. Lett. 7, 161–166 (2016).

    ADS  Google Scholar 

  109. 109.

    Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    ADS  Google Scholar 

  110. 110.

    Jošt, M. et al. Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy Environ. Sci. 11, 3511–3523 (2018).

    Google Scholar 

  111. 111.

    Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).

    ADS  Google Scholar 

  112. 112.

    Nogay, G. et al. 25.1%-efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Lett. 4, 844–845 (2019).

    Google Scholar 

  113. 113.

    Rohatgi, A. et al. 26.7% efficient 4-terminal perovskite-silicon tandem solar cell composed of a high-performance semitransparent perovskite cell and a doped poly-Si/SiOx passivating contact silicon cell. IEEE J. Photovoltaics 10, 417–422 (2020).

    Google Scholar 

  114. 114.

    Chen, B. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4, 850–864 (2020).

    Google Scholar 

  115. 115.

    Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    ADS  Google Scholar 

  116. 116.

    Case, C., Beaumont, N. & Kirk, D. Industrial insights into perovskite photovoltaics. ACS Energy Lett. 4, 2760–2762 (2019).

    Google Scholar 

  117. 117.

    Hörantner, M. T. & Snaith, H. J. Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci. 10, 1983–1993 (2017).

    Google Scholar 

  118. 118.

    Aydin, E. et al. Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells. Nat. Energy 5, 851–859 (2020).

    ADS  Google Scholar 

  119. 119.

    Todorov, T. et al. Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering. Adv. Energy Mater. 5, 1500799 (2015).

  120. 120.

    Han, Q. et al. High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells. Science 361, 904–908 (2018).

    ADS  Google Scholar 

  121. 121.

    Jošt, M. et al. 21.6%-efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces. ACS Energy Lett. 4, 583–590 (2019).

    Google Scholar 

  122. 122.

    Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019).

    Google Scholar 

  123. 123.

    Green, M. A. et al. Solar cell efficiency tables (version 56). Prog. Photovoltaics Res. Appl. 28, 629–638 (2020).

    Google Scholar 

  124. 124.

    Bush, K. A. et al. Minimizing current and voltage losses to reach 25% efficient monolithic two-terminal perovskite-silicon tandem solar cells. ACS Energy Lett. 3, 2173–2180 (2018).

    Google Scholar 

  125. 125.

    Zheng, J. et al. Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency. Energy Environ. Sci. 11, 2432–2443 (2018).

    Google Scholar 

  126. 126.

    Xu, J. et al. Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    ADS  Google Scholar 

  127. 127.

    Wang, R. et al. A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843 (2019).

    Google Scholar 

  128. 128.

    Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    ADS  Google Scholar 

  129. 129.

    Li, Y. et al. Unravelling degradation mechanisms and atomic structure of organic-inorganic halide perovskites by cryo-EM. Joule 3, 2854–2866 (2019).

    Google Scholar 

  130. 130.

    Xue, J., Wang, R. & Yang, Y. The surface of halide perovskites from nano to bulk. Nat. Rev. Mater. 5, 809–827 (2020).

    ADS  Google Scholar 

  131. 131.

    Hörantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).

    Google Scholar 

  132. 132.

    Werner, J. et al. Perovskite/perovskite/silicon monolithic triple-junction solar cells with a fully textured design. ACS Energy Lett. 3, 2052–2058 (2018).

    Google Scholar 

  133. 133.

    McMeekin, D. P. et al. Solution-processed all-perovskite multi-junction solar cells. Joule 3, 387–401 (2019).

    Google Scholar 

  134. 134.

    Xiao, K. et al. Solution-processed monolithic all-perovskite triple-junction solar cells with efficiency exceeding 20%. ACS Energy Lett. 5, 2819–2826 (2020).

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number DE- EE0008751. The work at NREL was supported by the US Department of Energy under contract number DE-AC36-08GO28308 with the Alliance for Sustainable Energy, Limited Liability Company (LLC), the Manager and Operator of the National Renewable Energy Laboratory. J.T. and K.Z. acknowledge the support from the De-Risking Halide Perovskite Solar Cells program of the National Center for Photovoltaics, funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the US Government. The publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide licence to publish or reproduce the published form of this work or allow others to do so, for US Government purposes.

Author information

Affiliations

Authors

Contributions

R.W, T.H., J.X. and J.T. researched most of the data and made the draft. K.Z. and Y.Y. revised the manuscript before submission and supervised the project.

Corresponding authors

Correspondence to Kai Zhu or Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Zhaoning Song and Hairen Tan for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Huang, T., Xue, J. et al. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 15, 411–425 (2021). https://doi.org/10.1038/s41566-021-00809-8

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing