Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Temporal solitons in a coherently driven active resonator

Abstract

Optical frequency combs are lightwaves composed of a large number of equidistant spectral lines. They are important for metrology, spectroscopy, communications and fundamental science. Frequency combs are most often generated by exciting dissipative solitons in lasers or in passive resonators, both of which suffer from important limitations. Here we show that the advantages of each platform can be combined. We introduce a novel kind of soliton (called an active cavity soliton) hosted in coherently driven lasers pumped below the lasing threshold. We use an active fibre resonator and measure high-peak-power solitons on a low-power background, in excellent agreement with simulations of a generalized Lugiato–Lefever equation. Moreover, we find that amplified spontaneous emission has negligible impact on the soliton’s stability. Our results open up novel avenues for frequency comb formation by showing that coherent driving and incoherent pumping can be efficiently combined to generate a high-power ultra-stable pulse train.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Experimental set-up and linear characterization.
Fig. 2: Soliton excitation under continuous-wave driving.
Fig. 3: Soliton formation under pulsed driving.
Fig. 4: Radiofrequency characterization of the soliton train.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Akhmediev, N. & Ankiewicz, A. (eds) Dissipative Solitons (Springer-Verlag, 2005); https://www.springer.com/gp/book/9783540233732

  2. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84–92 (2012).

    ADS  Article  Google Scholar 

  3. Akhmediev, N. & Ankiewicz, A. (eds) Dissipative Solitons: From Optics to Biology and Medicine (Springer Science and Business Media, 2008).

  4. Hofer, M., Fermann, M. E., Haberl, F., Ober, M. H. & Schmidt, A. J. Mode locking with cross-phase and self-phase modulation. Opt. Lett. 16, 502–504 (1991).

    ADS  Article  Google Scholar 

  5. Haus, H. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).

    ADS  Article  Google Scholar 

  6. Wang, F. et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol. 3, 738–742 (2008).

    ADS  Article  Google Scholar 

  7. Quarterman, A. H. et al. A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses. Nat. Photon. 3, 729–731 (2009).

    ADS  Article  Google Scholar 

  8. Kieu, K., Renninger, W. H., Chong, A. & Wise, F. W. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Opt. Lett. 34, 593–595 (2009).

    ADS  Article  Google Scholar 

  9. Piccardo, M. et al. Frequency combs induced by phase turbulence. Nature 582, 360–364 (2020).

    ADS  Article  Google Scholar 

  10. Wabnitz, S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett. 18, 601–603 (1993).

    ADS  Article  Google Scholar 

  11. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    ADS  Article  Google Scholar 

  12. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    ADS  Article  Google Scholar 

  13. Yi, X., Yang, Q. F., Yang, K. Y., Suh, M. G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    ADS  Article  Google Scholar 

  14. Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  15. Lilienfein, N. et al. Temporal solitons in free-space femtosecond enhancement cavities. Nat. Photon. 13, 214–218 (2019).

    ADS  Article  Google Scholar 

  16. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    ADS  Article  Google Scholar 

  17. Gordon, J. P. & Haus, H. A. Random walk of coherently amplified solitons in optical fiber transmission. Opt. Lett. 11, 665–667 (1986).

    ADS  Article  Google Scholar 

  18. Kim, J. & Song, Y. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photon. 8, 465–540 (2016).

    Article  Google Scholar 

  19. Yoshitomi, D. et al. Ultralow-jitter passive timing stabilization of a mode-locked Er-doped fiber laser by injection of an optical pulse train. Op. Lett. 31, 3243–3245 (2006).

    ADS  Article  Google Scholar 

  20. Quinlan, F., Gee, S., Ozharar, S. & Delfyett, P. J. Greater than 20-dB supermode noise suppression and timing jitter reduction via CW injection of a harmonically mode-locked laser. IEEE Photon. Technol. Lett. 19, 1221–1223 (2007).

    ADS  Article  Google Scholar 

  21. Rebrova, N., Habruseva, T., Huyet, G. & Hegarty, S. P. Stabilization of a passively mode-locked laser by continuous wave optical injection. Appl. Phys. Lett. 97, 101105 (2010).

    ADS  Article  Google Scholar 

  22. Garbin, B., Javaloyes, J., Tissoni, G. & Barland, S. Topological solitons as addressable phase bits in a driven laser. Nat. Commun. 6, 1–7 (2015).

    Article  Google Scholar 

  23. Bao, H. et al. Laser cavity-soliton microcombs. Nat. Photon. 13, 384–389 (2019).

    ADS  Article  Google Scholar 

  24. Choi, J. M., Lee, R. K. & Yariv, A. Control of critical coupling in a ring resonator-fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscillation. Opt. Lett. 26, 1236–1238 (2001).

    ADS  Article  Google Scholar 

  25. Dumeige, Y. et al. Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers. JOSA B 25, 2073–2080 (2008).

    ADS  Article  Google Scholar 

  26. Hsiao, H.K. & Winick, K. A. Planar glass waveguide ring resonators with gain. Opt. Exp. 15, 17783–17797 (2007).

    ADS  Article  Google Scholar 

  27. Barland, S. et al. Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002).

    ADS  Article  Google Scholar 

  28. Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    ADS  MathSciNet  Article  Google Scholar 

  29. Haelterman, M., Trillo, S. & Wabnitz, S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992).

    ADS  Article  Google Scholar 

  30. Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nature Photonics 7, 657–663 (2013).

    ADS  Article  Google Scholar 

  31. Coen, S. & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790–1792 (2013).

    ADS  Article  Google Scholar 

  32. Beck, M., Knobloch, J., Lloyd, D. J. B., Sandstede, B. & Wagenknecht, T. Snakes, ladders, and isolas of localized patterns. SIAM J. Math.l Anal. 41, 936–972 (2009).

    MathSciNet  Article  Google Scholar 

  33. Wang, Y. et al. Addressing temporal Kerr cavity solitons with a single pulse of intensity modulation. Opt. Lett. 43, 3192–3195 (2018).

    ADS  Article  Google Scholar 

  34. Leo, F., Gelens, L., Emplit, P., Haelterman, M. & Coen, S. Dynamics of one-dimensional Kerr cavity solitons. Opt. Exp. 21, 9180–9191 (2013).

    ADS  Article  Google Scholar 

  35. Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600–607 (2017).

    Article  Google Scholar 

  36. Hinkley, N. et al. An atomic clock with 10–18 instability. Science 341, 1215–1218 (2013).

    ADS  Article  Google Scholar 

  37. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS  Article  Google Scholar 

  38. Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).

    ADS  Article  Google Scholar 

  39. Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).

  40. Kippenberg, T. J., Kalkman, J., Polman, A. & Vahala, K. J. Demonstration of an erbium-doped microdisk laser on a silicon chip. Phys. Rev. A 74, 051802 (2006).

    ADS  Article  Google Scholar 

  41. Beeck, C. O. D. et al. Heterogeneous iiiv on silicon nitride amplifiers and lasers via microtransfer printing. Optica 7, 386–393 (2020).

    ADS  Article  Google Scholar 

  42. Bosenberg, W. R., Drobshoff, A., Alexander, J. I., Myers, L. E. & Byer, R. L. 93% Pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator. Opt. Lett. 21, 1336–1338 (1996).

    ADS  Article  Google Scholar 

  43. Englebert, N. et al. Parametrically driven Kerr cavity solitons. Preprint at https://arxiv.org/abs/2101.07784 (2021).

  44. Volet, N. et al. Micro-resonator soliton generated directly with a diode laser. Laser Photon. Rev. 12, 1700307 (2018).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Fatome, P. Kockaert, B. Kuyken and K. Van Gasse for fruitful discussions. This work was supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 757800). N.E. acknowledges the support of the Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA). F.L. and P.P.-R. acknowledge the support of the Fonds de la Recherche Scientifique (FNRS).

Author information

Authors and Affiliations

Authors

Contributions

N.E. performed the experiments and simulations of the lumped-element model. N.E. and C.M.A. derived and simulated the mean-field model. C.M.A. and P.P.-R. performed the numerical parameter continuation of the steady-state solutions. S.-P.G. and F.L. supervised the work.

Corresponding author

Correspondence to Nicolas Englebert.

Ethics declarations

Competing interests

N.E., S.-P.G. and F.L. filed a patent application on the active resonator design (European patent office, application number EP20188731.2). The remaining authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Englebert, N., Mas Arabí, C., Parra-Rivas, P. et al. Temporal solitons in a coherently driven active resonator. Nat. Photon. 15, 536–541 (2021). https://doi.org/10.1038/s41566-021-00807-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00807-w

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing