Photonics offers high hopes for next-generation neural network processors. Now it has been shown that even entirely using off-the-shelf photonics allows surpassing speed and energy efficiency of cutting-edge GPUs.
This is a preview of subscription content, access via your institution
Access options
Subscribe to Nature+
Get immediate online access to Nature and 55 other Nature journal
$29.99
monthly
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.

References
Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Nat. Rev. Phys. 2, 499–510 (2020).
Psaltis, D., Brady, D., Gu, X.-G. & Lin, S. Nature 343, 325–330 (1990).
Zhou, T. et al. Nat. Photon. https://doi.org/10.1038/s41566-021-00796-w (2021).
Rafayelyan, M., Dong, J., Tan, Y., Krzakala, F. & Gigan, S. Phys. Rev. X 10, 41037 (2020).
Lin, X. et al. Science 361, 1004–1008 (2018).
Dinc, N. U., Psaltis, D. & Brunner, D. Photoniques 114, 34–38 (2020).
Wetzstein, G. et al. Nature 588, 39–47 (2020).
Xu, X. et al. Nature 589, 44–51 (2021).
Feldmann, J. et al. Nature 589, 52–58 (2021).
Teğin, U., Yıldırım, M., Oğuz, İ., Moser, C. & Psaltis, D. Preprint at https://arxiv.org/abs/2012.12404 (2020).
Porte, X. et al. Preprint at https://arxiv.org/abs/2012.11153 (2020).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Brunner, D., Psaltis, D. Competitive photonic neural networks. Nat. Photonics 15, 323–324 (2021). https://doi.org/10.1038/s41566-021-00803-0
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-021-00803-0