Abstract
Rapid progress in the development of metamaterials and metaphotonics allowed bulky optical assemblies to be replaced with thin nanostructured films, often called metasurfaces, opening a broad range of novel and superior applications of flat optics to the generation, manipulation and detection of classical light. Recently, these developments started making headway in quantum photonics, where novel opportunities arose for the control of non-classical nature of light, including photon statistics, quantum state superposition, quantum entanglement and single-photon detection. In this Perspective, we review recent progress in the emerging field of quantum-photonics applications of metasurfaces, focusing on innovative and promising approaches to create, manipulate and detect non-classical light.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Arbitrarily structured quantum emission with a multifunctional metalens
eLight Open Access 07 August 2023
-
Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods
Light: Science & Applications Open Access 07 July 2023
-
Integrated metasurfaces for re-envisioning a near-future disruptive optical platform
Light: Science & Applications Open Access 20 June 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Change history
15 June 2021
A Correction to this paper has been published: https://doi.org/10.1038/s41566-021-00844-5
References
Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).
Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).
Kruk, S. & Kivshar, Y. Functional meta-optics and nanophotonics governed by Mie resonances. ACS Photon. 4, 2638–2649 (2017).
Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).
Chang, S., Guo, X. & Ni, X. Optical metasurfaces: progress and applications. Annu. Rev. Mater. Res. 48, 279–302 (2018).
Osborne, I. S. Dynamic metasurfaces. Science 364, 645–647 (2019).
Moreau, P.-A. et al. Imaging Bell-type nonlocal behavior. Sci. Adv. 5, eaaw2563 (2019).
Paniagua-Dominguez, R., Ha, S. T. & Kuznetsov, A. I. Active and tunable nanophotonics with dielectric nanoantennas. Proc. IEEE 108, 749–771 (2020).
Pertsch, T. & Kivshar, Y. Nonlinear optics with resonant metasurfaces. MRS Bull. 45, 210–220 (2020).
Chen, S., Li, Z., Zhang, Y., Cheng, H. & Tian, J. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Adv. Opt. Mater. 6, 1800104 (2018).
Kamali, S. M., Arbabi, E., Arbabi, A. & Faraon, A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 7, 1041–1068 (2018).
Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl. 8, 92 (2019).
Kang, L., Jenkins, R. P. & Werner, D. H. Recent progress in active optical metasurfaces. Adv. Opt. Mater. 7, 1801813 (2019).
Bernhardt, N. et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett. 20, 5309–5314 (2020).
Luo, X. Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater. 6, 1701201 (2018).
Li, C. et al. Dielectric metasurfaces: from wavefront shaping to quantum platforms. Prog. Surf. Sci. 95, 100584 (2020).
Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).
Varró, S. Correlations in single-photon experiments. Fortschr. Phys. 56, 91–102 (2008).
Collett, M. J., Loudon, R. & Gardiner, C. W. Quantum theory of optical homodyne and heterodyne detection. J. Mod. Opt. 34, 881–902 (1987).
Magaña-Loaiza, O. S. et al. Multiphoton quantum-state engineering using conditional measurements. npj Quantum Inf. 5, 80 (2019).
Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988).
Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).
Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).
Slussarenko, S. & Pryde, G. J. Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6, 041303 (2019).
Ma, X., Yuan, X., Cao, Z., Qi, B. & Zhang, Z. Quantum random number generation. npj Quantum Inf. 2, 16021 (2016).
White, S. J. U. et al. Quantum random number generation using a hexagonal boron nitride single photon emitter. J. Opt. 23, 01LT01 (2020).
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).
Hudelist, F. et al. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun. 5, 3049 (2014).
Solntsev, A. S., Kumar, P., Pertsch, T., Sukhorukov, A. A. & Setzpfandt, F. LiNbO3 waveguides for integrated SPDC spectroscopy. APL Photon. 3, 021301 (2018).
Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).
Yin, J. et al. Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501–505 (2020).
Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).
Samantaray, N., Ruo-Berchera, I., Meda, A. & Genovese, M. Realization of the first sub-shot-noise wide field microscope. Light. Sci. Appl. 6, e17005 (2017).
Dowran, M., Kumar, A., Lawrie, B. J., Pooser, R. C. & Marino, A. M. Quantum-enhanced plasmonic sensing. Optica 5, 628–633 (2018).
Gajjela, R. S. R. Atomic-scale characterization of droplet epitaxy quantum dots. Nanomaterials 11, 85 (2021).
Mizuochi, N. et al. Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012).
Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).
Marino, G. et al. Spontaneous photon-pair generation from a dielectric nanoantenna. Optica 6, 1416–1422 (2019).
Zhu, L. et al. A dielectric metasurface optical chip for the generation of cold atoms. Sci. Adv. 6, eabb6667 (2020).
Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).
Wen, J., Zhang, Y. & Xiao, M. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Photon. 5, 83–130 (2013).
Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Imaging with quantum states of light. Nat. Rev. Phys. 1, 367–380 (2019).
Gefen, T., Rotem, A. & Retzker, A. Overcoming resolution limits with quantum sensing. Nat. Commun. 10, 4992 (2019).
Ritchie, N. W. M., Story, J. G. & Hulet, R. G. Realization of a measurement of a ‘weak value’. Phys. Rev. Lett. 66, 1107–1110 (1991).
Pryde, G. J., O’Brien, J. L., White, A. G., Ralph, T. C. & Wiseman, H. M. Measurement of quantum weak values of photon polarization. Phys. Rev. Lett. 94, 220405 (2005).
Salvail, J. Z. et al. Full characterization of polarization states of light via direct measurement. Nat. Photon. 7, 316–321 (2013).
Baranov, D. G., Krasnok, A., Shegai, T., Alù, A. & Chong, Y. Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017).
Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010).
Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photon. 9, 427–435 (2015).
Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. IV. General theory for spontaneous emission in finite geometries. Phys. Rev. A 12, 1475–1497 (1975).
Lunnemann, P. & Koenderink, A. F. The local density of optical states of a metasurface. Sci. Rep. 6, 20655 (2016).
Vaskin, A., Kolkowski, R., Koenderink, A. F. & Staude, I. Light-emitting metasurfaces. Nanophotonics 8, 1151–1198 (2019).
Iwanaga, M., Mano, T. & Ikeda, N. Superlinear photoluminescence dynamics in plasmon–quantum-dot coupling systems. ACS Photon. 5, 897–906 (2018).
Wu, M. et al. Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum. Nano Lett. 20, 6005–6011 (2020).
Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).
Tran, T. T. et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 17, 2634–2639 (2017).
Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).
Proscia, N. V. et al. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica 5, 1128–1134 (2018).
Xie, Y.-Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020).
Kan, Y. et al. Metasurface‐enabled generation of circularly polarized single photons. Adv. Mater. 32, 1907832 (2020).
Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).
Solntsev, A. S. & Sukhorukov, A. A. Path-entangled photon sources on nonlinear chips. Rev. Phys 2, 19–31 (2017).
Parry, M. et al. Photon-pair generation via bound states in the continuum in nonlinear metasurfaces. In 14th Pacific Rim Conference on Lasers and Electro-Optics C8G_2 (OSA, 2020); https://doi.org/10.1364/CLEOPR.2020.C8G_2
Suchowski, H. et al. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science 342, 1223–1226 (2013).
Okoth, C., Cavanna, A., Santiago-Cruz, T. & Chekhova, M. V. Microscale generation of entangled photons without momentum conservation. Phys. Rev. Lett. 123, 263602 (2019).
Pittman, T. B., Shih, Y. H., Strekalov, D. V. & Sergienko, A. V. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432 (1995).
Strekalov, D. V., Sergienko, A. V., Klyshko, D. N. & Shih, Y. H. Observation of two-photon ‘ghost’ interference and diffraction. Phys. Rev. Lett. 74, 3600–3603 (1995).
Abouraddy, A. F., Stone, P. R., Sergienko, A. V., Saleh, B. E. A. & Teich, M. C. Entangled-photon imaging of a pure phase object. Phys. Rev. Lett. 93, 213903 (2004).
Li, L. et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science 368, 1487–1490 (2020).
Ming, Y. et al. Photonic entanglement based on nonlinear metamaterials. Laser Photon. Rev. 14, 1900146 (2020).
Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).
Ballantine, K. E. & Ruostekoski, J. Optical magnetism and Huygens’ surfaces in arrays of atoms induced by cooperative responses. Phys. Rev. Lett. 125, 143604 (2020).
Parmee, C. D. & Ruostekoski, J. Signatures of optical phase transitions in superradiant and subradiant atomic arrays. Commun. Phys. 3, 205 (2020).
Ryzhov, I. V., Malikov, R. F., Malyshev, A. V. & Malyshev, V. A. Quantum metasurfaces with periodic arrays of Λ-emitters. Preprint at https://arxiv.org/abs/2009.08284 (2020).
Alaee, R., Gurlek, B., Albooyeh, M., Martín-Cano, D. & Sandoghdar, V. Quantum metamaterials with magnetic response at optical frequencies. Phys. Rev. Lett. 125, 063601 (2020).
Rui, J. et al. A subradiant optical mirror formed by a single structured atomic layer. Nature 583, 369–374 (2020).
Bekenstein, R. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676–681 (2020).
Perczel, J., Borregaard, J., Chang, D. E., Yelin, S. F. & Lukin, M. D. Topological quantum optics using atomlike emitter arrays coupled to photonic crystals. Phys. Rev. Lett. 124, 083603 (2020).
Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).
Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries. Phys. Rev. A 11, 230–242 (1975).
Agarwal, G. S. Anisotropic vacuum-induced interference in decay channels. Phys. Rev. Lett. 84, 5500–5503 (2000).
Jha, P. K., Ni, X., Wu, C., Wang, Y. & Zhang, X. Metasurface-enabled remote quantum interference. Phys. Rev. Lett. 115, 025501 (2015).
Kornovan, D., Petrov, M. & Iorsh, I. Noninverse dynamics of a quantum emitter coupled to a fully anisotropic environment. Phys. Rev. A 100, 033840 (2019).
Lassalle, E. et al. Long-lifetime coherence in a quantum emitter induced by a metasurface. Phys. Rev. A 101, 013837 (2020).
Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).
Xu, D. et al. Quantum plasmonics: new opportunity in fundamental and applied photonics. Adv. Opt. Photon. 10, 703–756 (2018).
Wang, K. et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018).
Lung, S. et al. Complex-birefringent dielectric metasurfaces for arbitrary polarization-pair transformations. ACS Photon. 7, 3015–3022 (2020).
Nagali, E. et al. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103, 013601 (2009).
Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).
Biehs, S.-A. & Agarwal, G. S. Qubit entanglement across ε-near-zero media. Phys. Rev. A 96, 022308 (2017).
Jha, P. K. et al. Metasurface-mediated quantum entanglement. ACS Photon. 5, 971–976 (2018).
Chen, S. et al. Dielectric metasurfaces for quantum weak measurements. Appl. Phys. Lett. 110, 161115 (2017).
Georgi, P. et al. Metasurface interferometry toward quantum sensors. Light. Sci. Appl. 8, 70 (2019).
Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).
Ono, T., Okamoto, R. & Takeuchi, S. An entanglement-enhanced microscope. Nat. Commun. 4, 2426 (2013).
Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).
Huang, S. & Agarwal, G. S. Coherent perfect absorption of path entangled single photons. Opt. Express 22, 20936 (2014).
Roger, T. et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nat. Commun. 6, 7031 (2015).
Lyons, A. et al. Coherent metamaterial absorption of two-photon states with 40% efficiency. Phys. Rev. A 99, 011801 (2019).
Huang, T.-Y. et al. A monolithic immersion metalens for imaging solid-state quantum emitters. Nat. Commun. 10, 2392 (2019).
Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).
Bornman, N. et al. Ghost imaging using entanglement-swapped photons. npj Quantum Inf. 5, 63 (2019).
Paterova, A. V. et al. Nonlinear interferometry with infrared metasurfaces. Preprint at https://arxiv.org/abs/2007.14117 (2020).
Altuzarra, C. et al. Imaging of polarization-sensitive metasurfaces with quantum entanglement. Phys. Rev. A 99, 020101 (2019).
Algar, W. R. et al. FRET as a biomolecular research tool—understanding its potential while avoiding pitfalls. Nat. Methods 16, 815–829 (2019).
Deshmukh, R. et al. Long-range resonant energy transfer using optical topological transitions in metamaterials. ACS Photon. 5, 2737–2741 (2018).
Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).
Acknowledgements
We thank M. Chekhova, M. Davis, J. Ruostekoski, D. P. Tsai and V. Zadkov for useful comments and suggestions. A.S.S. and Y.S.K. acknowledge support from the Australian Research Council (grant numbers DE180100070 and DP200101168), the University of Technology Sydney (Seed Funding Grant), and the Strategic Fund of the Australian National University. Y.S.K. acknowldeges support from the US Army International Office (grant FA520921P0034). G.S.A. acknowledges support from the R. A. Welch Foundation (grant number A-1943) and AFOSR award number FA9550-20-1-0366.
Author information
Authors and Affiliations
Contributions
All authors contributed to the writing of this manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Solntsev, A.S., Agarwal, G.S. & Kivshar, Y.S. Metasurfaces for quantum photonics. Nat. Photonics 15, 327–336 (2021). https://doi.org/10.1038/s41566-021-00793-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-021-00793-z
This article is cited by
-
Arbitrarily structured quantum emission with a multifunctional metalens
eLight (2023)
-
Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision
Nature Communications (2023)
-
Enabling smart vision with metasurfaces
Nature Photonics (2023)
-
A subwavelength atomic array switched by a single Rydberg atom
Nature Physics (2023)
-
A multi-mode super-fano mechanism for enhanced third harmonic generation in silicon metasurfaces
Light: Science & Applications (2023)