Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metasurfaces for quantum photonics

A Publisher Correction to this article was published on 15 June 2021

This article has been updated

Abstract

Rapid progress in the development of metamaterials and metaphotonics allowed bulky optical assemblies to be replaced with thin nanostructured films, often called metasurfaces, opening a broad range of novel and superior applications of flat optics to the generation, manipulation and detection of classical light. Recently, these developments started making headway in quantum photonics, where novel opportunities arose for the control of non-classical nature of light, including photon statistics, quantum state superposition, quantum entanglement and single-photon detection. In this Perspective, we review recent progress in the emerging field of quantum-photonics applications of metasurfaces, focusing on innovative and promising approaches to create, manipulate and detect non-classical light.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Quantum optics with metasurfaces.
Fig. 2: Integration of single-photon emitters with metasurfaces.
Fig. 3: Nonlinear and quantum metasurfaces.
Fig. 4: Photon manipulation by metasurfaces.
Fig. 5: Detection of non-classical light with dielectric metasurfaces.

Change history

References

  1. 1.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    ADS  Google Scholar 

  2. 2.

    Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).

    ADS  Google Scholar 

  3. 3.

    Kruk, S. & Kivshar, Y. Functional meta-optics and nanophotonics governed by Mie resonances. ACS Photon. 4, 2638–2649 (2017).

    Google Scholar 

  4. 4.

    Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    ADS  Google Scholar 

  5. 5.

    Chang, S., Guo, X. & Ni, X. Optical metasurfaces: progress and applications. Annu. Rev. Mater. Res. 48, 279–302 (2018).

    Google Scholar 

  6. 6.

    Osborne, I. S. Dynamic metasurfaces. Science 364, 645–647 (2019).

    ADS  Google Scholar 

  7. 7.

    Moreau, P.-A. et al. Imaging Bell-type nonlocal behavior. Sci. Adv. 5, eaaw2563 (2019).

    ADS  Google Scholar 

  8. 8.

    Paniagua-Dominguez, R., Ha, S. T. & Kuznetsov, A. I. Active and tunable nanophotonics with dielectric nanoantennas. Proc. IEEE 108, 749–771 (2020).

    Google Scholar 

  9. 9.

    Pertsch, T. & Kivshar, Y. Nonlinear optics with resonant metasurfaces. MRS Bull. 45, 210–220 (2020).

    ADS  Google Scholar 

  10. 10.

    Chen, S., Li, Z., Zhang, Y., Cheng, H. & Tian, J. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Adv. Opt. Mater. 6, 1800104 (2018).

    Google Scholar 

  11. 11.

    Kamali, S. M., Arbabi, E., Arbabi, A. & Faraon, A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 7, 1041–1068 (2018).

    Google Scholar 

  12. 12.

    Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl. 8, 92 (2019).

    ADS  Google Scholar 

  13. 13.

    Kang, L., Jenkins, R. P. & Werner, D. H. Recent progress in active optical metasurfaces. Adv. Opt. Mater. 7, 1801813 (2019).

    Google Scholar 

  14. 14.

    Bernhardt, N. et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett. 20, 5309–5314 (2020).

    ADS  Google Scholar 

  15. 15.

    Luo, X. Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater. 6, 1701201 (2018).

    Google Scholar 

  16. 16.

    Li, C. et al. Dielectric metasurfaces: from wavefront shaping to quantum platforms. Prog. Surf. Sci. 95, 100584 (2020).

    Google Scholar 

  17. 17.

    Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    ADS  Google Scholar 

  18. 18.

    Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    ADS  Google Scholar 

  19. 19.

    Varró, S. Correlations in single-photon experiments. Fortschr. Phys. 56, 91–102 (2008).

    MathSciNet  Google Scholar 

  20. 20.

    Collett, M. J., Loudon, R. & Gardiner, C. W. Quantum theory of optical homodyne and heterodyne detection. J. Mod. Opt. 34, 881–902 (1987).

    ADS  Google Scholar 

  21. 21.

    Magaña-Loaiza, O. S. et al. Multiphoton quantum-state engineering using conditional measurements. npj Quantum Inf. 5, 80 (2019).

    ADS  Google Scholar 

  22. 22.

    Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988).

    ADS  Google Scholar 

  23. 23.

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    ADS  MATH  Google Scholar 

  24. 24.

    Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

    ADS  Google Scholar 

  25. 25.

    Slussarenko, S. & Pryde, G. J. Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6, 041303 (2019).

    ADS  Google Scholar 

  26. 26.

    Ma, X., Yuan, X., Cao, Z., Qi, B. & Zhang, Z. Quantum random number generation. npj Quantum Inf. 2, 16021 (2016).

    ADS  Google Scholar 

  27. 27.

    White, S. J. U. et al. Quantum random number generation using a hexagonal boron nitride single photon emitter. J. Opt. 23, 01LT01 (2020).

    Google Scholar 

  28. 28.

    Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    ADS  Google Scholar 

  29. 29.

    Hudelist, F. et al. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun. 5, 3049 (2014).

    ADS  Google Scholar 

  30. 30.

    Solntsev, A. S., Kumar, P., Pertsch, T., Sukhorukov, A. A. & Setzpfandt, F. LiNbO3 waveguides for integrated SPDC spectroscopy. APL Photon. 3, 021301 (2018).

    ADS  Google Scholar 

  31. 31.

    Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    Google Scholar 

  32. 32.

    Yin, J. et al. Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501–505 (2020).

    ADS  Google Scholar 

  33. 33.

    Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    ADS  Google Scholar 

  34. 34.

    Samantaray, N., Ruo-Berchera, I., Meda, A. & Genovese, M. Realization of the first sub-shot-noise wide field microscope. Light. Sci. Appl. 6, e17005 (2017).

    ADS  Google Scholar 

  35. 35.

    Dowran, M., Kumar, A., Lawrie, B. J., Pooser, R. C. & Marino, A. M. Quantum-enhanced plasmonic sensing. Optica 5, 628–633 (2018).

    ADS  Google Scholar 

  36. 36.

    Gajjela, R. S. R. Atomic-scale characterization of droplet epitaxy quantum dots. Nanomaterials 11, 85 (2021).

    Google Scholar 

  37. 37.

    Mizuochi, N. et al. Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012).

    ADS  Google Scholar 

  38. 38.

    Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    ADS  Google Scholar 

  39. 39.

    Marino, G. et al. Spontaneous photon-pair generation from a dielectric nanoantenna. Optica 6, 1416–1422 (2019).

    ADS  Google Scholar 

  40. 40.

    Zhu, L. et al. A dielectric metasurface optical chip for the generation of cold atoms. Sci. Adv. 6, eabb6667 (2020).

    ADS  Google Scholar 

  41. 41.

    Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).

    ADS  Google Scholar 

  42. 42.

    Wen, J., Zhang, Y. & Xiao, M. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Photon. 5, 83–130 (2013).

    Google Scholar 

  43. 43.

    Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Imaging with quantum states of light. Nat. Rev. Phys. 1, 367–380 (2019).

    Google Scholar 

  44. 44.

    Gefen, T., Rotem, A. & Retzker, A. Overcoming resolution limits with quantum sensing. Nat. Commun. 10, 4992 (2019).

    ADS  Google Scholar 

  45. 45.

    Ritchie, N. W. M., Story, J. G. & Hulet, R. G. Realization of a measurement of a ‘weak value’. Phys. Rev. Lett. 66, 1107–1110 (1991).

    ADS  Google Scholar 

  46. 46.

    Pryde, G. J., O’Brien, J. L., White, A. G., Ralph, T. C. & Wiseman, H. M. Measurement of quantum weak values of photon polarization. Phys. Rev. Lett. 94, 220405 (2005).

    ADS  Google Scholar 

  47. 47.

    Salvail, J. Z. et al. Full characterization of polarization states of light via direct measurement. Nat. Photon. 7, 316–321 (2013).

    ADS  Google Scholar 

  48. 48.

    Baranov, D. G., Krasnok, A., Shegai, T., Alù, A. & Chong, Y. Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017).

    ADS  Google Scholar 

  49. 49.

    Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010).

    ADS  Google Scholar 

  50. 50.

    Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photon. 9, 427–435 (2015).

    ADS  Google Scholar 

  51. 51.

    Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. IV. General theory for spontaneous emission in finite geometries. Phys. Rev. A 12, 1475–1497 (1975).

    ADS  Google Scholar 

  52. 52.

    Lunnemann, P. & Koenderink, A. F. The local density of optical states of a metasurface. Sci. Rep. 6, 20655 (2016).

    ADS  Google Scholar 

  53. 53.

    Vaskin, A., Kolkowski, R., Koenderink, A. F. & Staude, I. Light-emitting metasurfaces. Nanophotonics 8, 1151–1198 (2019).

    Google Scholar 

  54. 54.

    Iwanaga, M., Mano, T. & Ikeda, N. Superlinear photoluminescence dynamics in plasmon–quantum-dot coupling systems. ACS Photon. 5, 897–906 (2018).

    Google Scholar 

  55. 55.

    Wu, M. et al. Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum. Nano Lett. 20, 6005–6011 (2020).

    ADS  Google Scholar 

  56. 56.

    Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).

    ADS  Google Scholar 

  57. 57.

    Tran, T. T. et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 17, 2634–2639 (2017).

    ADS  Google Scholar 

  58. 58.

    Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).

    ADS  Google Scholar 

  59. 59.

    Proscia, N. V. et al. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica 5, 1128–1134 (2018).

    ADS  Google Scholar 

  60. 60.

    Xie, Y.-Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020).

    ADS  Google Scholar 

  61. 61.

    Kan, Y. et al. Metasurface‐enabled generation of circularly polarized single photons. Adv. Mater. 32, 1907832 (2020).

    Google Scholar 

  62. 62.

    Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).

    Google Scholar 

  63. 63.

    Solntsev, A. S. & Sukhorukov, A. A. Path-entangled photon sources on nonlinear chips. Rev. Phys 2, 19–31 (2017).

    Google Scholar 

  64. 64.

    Parry, M. et al. Photon-pair generation via bound states in the continuum in nonlinear metasurfaces. In 14th Pacific Rim Conference on Lasers and Electro-Optics C8G_2 (OSA, 2020); https://doi.org/10.1364/CLEOPR.2020.C8G_2

  65. 65.

    Suchowski, H. et al. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science 342, 1223–1226 (2013).

    ADS  Google Scholar 

  66. 66.

    Okoth, C., Cavanna, A., Santiago-Cruz, T. & Chekhova, M. V. Microscale generation of entangled photons without momentum conservation. Phys. Rev. Lett. 123, 263602 (2019).

    ADS  Google Scholar 

  67. 67.

    Pittman, T. B., Shih, Y. H., Strekalov, D. V. & Sergienko, A. V. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432 (1995).

    ADS  Google Scholar 

  68. 68.

    Strekalov, D. V., Sergienko, A. V., Klyshko, D. N. & Shih, Y. H. Observation of two-photon ‘ghost’ interference and diffraction. Phys. Rev. Lett. 74, 3600–3603 (1995).

    ADS  Google Scholar 

  69. 69.

    Abouraddy, A. F., Stone, P. R., Sergienko, A. V., Saleh, B. E. A. & Teich, M. C. Entangled-photon imaging of a pure phase object. Phys. Rev. Lett. 93, 213903 (2004).

    ADS  Google Scholar 

  70. 70.

    Li, L. et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science 368, 1487–1490 (2020).

    ADS  Google Scholar 

  71. 71.

    Ming, Y. et al. Photonic entanglement based on nonlinear metamaterials. Laser Photon. Rev. 14, 1900146 (2020).

    ADS  Google Scholar 

  72. 72.

    Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    ADS  Google Scholar 

  73. 73.

    Ballantine, K. E. & Ruostekoski, J. Optical magnetism and Huygens’ surfaces in arrays of atoms induced by cooperative responses. Phys. Rev. Lett. 125, 143604 (2020).

    ADS  Google Scholar 

  74. 74.

    Parmee, C. D. & Ruostekoski, J. Signatures of optical phase transitions in superradiant and subradiant atomic arrays. Commun. Phys. 3, 205 (2020).

    Google Scholar 

  75. 75.

    Ryzhov, I. V., Malikov, R. F., Malyshev, A. V. & Malyshev, V. A. Quantum metasurfaces with periodic arrays of Λ-emitters. Preprint at https://arxiv.org/abs/2009.08284 (2020).

  76. 76.

    Alaee, R., Gurlek, B., Albooyeh, M., Martín-Cano, D. & Sandoghdar, V. Quantum metamaterials with magnetic response at optical frequencies. Phys. Rev. Lett. 125, 063601 (2020).

    ADS  Google Scholar 

  77. 77.

    Rui, J. et al. A subradiant optical mirror formed by a single structured atomic layer. Nature 583, 369–374 (2020).

    ADS  Google Scholar 

  78. 78.

    Bekenstein, R. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676–681 (2020).

    Google Scholar 

  79. 79.

    Perczel, J., Borregaard, J., Chang, D. E., Yelin, S. F. & Lukin, M. D. Topological quantum optics using atomlike emitter arrays coupled to photonic crystals. Phys. Rev. Lett. 124, 083603 (2020).

    ADS  Google Scholar 

  80. 80.

    Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

    ADS  Google Scholar 

  81. 81.

    Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries. Phys. Rev. A 11, 230–242 (1975).

    ADS  Google Scholar 

  82. 82.

    Agarwal, G. S. Anisotropic vacuum-induced interference in decay channels. Phys. Rev. Lett. 84, 5500–5503 (2000).

    ADS  Google Scholar 

  83. 83.

    Jha, P. K., Ni, X., Wu, C., Wang, Y. & Zhang, X. Metasurface-enabled remote quantum interference. Phys. Rev. Lett. 115, 025501 (2015).

    ADS  Google Scholar 

  84. 84.

    Kornovan, D., Petrov, M. & Iorsh, I. Noninverse dynamics of a quantum emitter coupled to a fully anisotropic environment. Phys. Rev. A 100, 033840 (2019).

    ADS  Google Scholar 

  85. 85.

    Lassalle, E. et al. Long-lifetime coherence in a quantum emitter induced by a metasurface. Phys. Rev. A 101, 013837 (2020).

    ADS  Google Scholar 

  86. 86.

    Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).

    ADS  Google Scholar 

  87. 87.

    Xu, D. et al. Quantum plasmonics: new opportunity in fundamental and applied photonics. Adv. Opt. Photon. 10, 703–756 (2018).

    Google Scholar 

  88. 88.

    Wang, K. et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018).

    ADS  Google Scholar 

  89. 89.

    Lung, S. et al. Complex-birefringent dielectric metasurfaces for arbitrary polarization-pair transformations. ACS Photon. 7, 3015–3022 (2020).

  90. 90.

    Nagali, E. et al. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103, 013601 (2009).

    ADS  Google Scholar 

  91. 91.

    Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).

    ADS  Google Scholar 

  92. 92.

    Biehs, S.-A. & Agarwal, G. S. Qubit entanglement across ε-near-zero media. Phys. Rev. A 96, 022308 (2017).

    ADS  Google Scholar 

  93. 93.

    Jha, P. K. et al. Metasurface-mediated quantum entanglement. ACS Photon. 5, 971–976 (2018).

    Google Scholar 

  94. 94.

    Chen, S. et al. Dielectric metasurfaces for quantum weak measurements. Appl. Phys. Lett. 110, 161115 (2017).

    ADS  Google Scholar 

  95. 95.

    Georgi, P. et al. Metasurface interferometry toward quantum sensors. Light. Sci. Appl. 8, 70 (2019).

    ADS  Google Scholar 

  96. 96.

    Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).

    ADS  Google Scholar 

  97. 97.

    Ono, T., Okamoto, R. & Takeuchi, S. An entanglement-enhanced microscope. Nat. Commun. 4, 2426 (2013).

    ADS  Google Scholar 

  98. 98.

    Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).

    ADS  Google Scholar 

  99. 99.

    Huang, S. & Agarwal, G. S. Coherent perfect absorption of path entangled single photons. Opt. Express 22, 20936 (2014).

    ADS  Google Scholar 

  100. 100.

    Roger, T. et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nat. Commun. 6, 7031 (2015).

    ADS  Google Scholar 

  101. 101.

    Lyons, A. et al. Coherent metamaterial absorption of two-photon states with 40% efficiency. Phys. Rev. A 99, 011801 (2019).

    ADS  Google Scholar 

  102. 102.

    Huang, T.-Y. et al. A monolithic immersion metalens for imaging solid-state quantum emitters. Nat. Commun. 10, 2392 (2019).

    ADS  Google Scholar 

  103. 103.

    Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

    ADS  Google Scholar 

  104. 104.

    Bornman, N. et al. Ghost imaging using entanglement-swapped photons. npj Quantum Inf. 5, 63 (2019).

    ADS  Google Scholar 

  105. 105.

    Paterova, A. V. et al. Nonlinear interferometry with infrared metasurfaces. Preprint at https://arxiv.org/abs/2007.14117 (2020).

  106. 106.

    Altuzarra, C. et al. Imaging of polarization-sensitive metasurfaces with quantum entanglement. Phys. Rev. A 99, 020101 (2019).

    ADS  Google Scholar 

  107. 107.

    Algar, W. R. et al. FRET as a biomolecular research tool—understanding its potential while avoiding pitfalls. Nat. Methods 16, 815–829 (2019).

    Google Scholar 

  108. 108.

    Deshmukh, R. et al. Long-range resonant energy transfer using optical topological transitions in metamaterials. ACS Photon. 5, 2737–2741 (2018).

    Google Scholar 

  109. 109.

    Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Chekhova, M. Davis, J. Ruostekoski, D. P. Tsai and V. Zadkov for useful comments and suggestions. A.S.S. and Y.S.K. acknowledge support from the Australian Research Council (grant numbers DE180100070 and DP200101168), the University of Technology Sydney (Seed Funding Grant), and the Strategic Fund of the Australian National University. Y.S.K. acknowldeges support from the US Army International Office (grant FA520921P0034). G.S.A. acknowledges support from the R. A. Welch Foundation (grant number A-1943) and AFOSR award number FA9550-20-1-0366.

Author information

Affiliations

Authors

Contributions

All authors contributed to the writing of this manuscript.

Corresponding authors

Correspondence to Alexander S. Solntsev or Yuri S. Kivshar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solntsev, A.S., Agarwal, G.S. & Kivshar, Y.S. Metasurfaces for quantum photonics. Nat. Photon. 15, 327–336 (2021). https://doi.org/10.1038/s41566-021-00793-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing