Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On-chip sampling of optical fields with attosecond resolution

A Publisher Correction to this article was published on 06 May 2021

This article has been updated

Abstract

We demonstrate an on-chip, optoelectronic device capable of sampling arbitrary, low-energy, near-infrared waveforms under ambient conditions with sub-optical-cycle resolution. Our detector uses field-driven photoemission from resonant nanoantennas to create attosecond electron bursts that probe the electric field of weak optical waveforms. Using these devices, we sampled the electric fields of ~5 fJ (6.4 MV m−1), few-cycle, near-infrared waveforms using ~50 pJ (0.64 GV m−1) near-infrared driving pulses. Beyond sampling these weak optical waveforms, our measurements directly reveal the localized plasmonic dynamics of the emitting nanoantennas in situ. Applications include broadband time-domain spectroscopy of molecular fingerprints from the visible region through the infrared, time-domain analysis of nonlinear phenomena and detailed investigations of strong-field light–matter interactions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Device overview.
Fig. 2: Experimental field-sampling results and analysis.
Fig. 3: Frequency domain of the experimental field-sampling results.
Fig. 4: Theoretical sampling bandwidth.

Data availability

All data are available in the following GitHub repository: https://github.com/qnngroup/On-chip-sampling-of-optical-fields-with-attosecond-resolution---Data-Analysis.

Code availability

All code is available in the following GitHub repository: https://github.com/qnngroup/On-chip-sampling-of-optical-fields-with-attosecond-resolution---Data-Analysis.

Change history

References

  1. Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  2. Neu, J. & Schmuttenmaer, C. A. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 124, 231101 (2018).

    Article  ADS  Google Scholar 

  3. Bonvalet, A. et al. Femtosecond infrared emission resulting from coherent charge oscillations in quantum wells. Phys. Rev. Lett. 76, 4392–4395 (1996).

    Article  ADS  Google Scholar 

  4. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photonics 8, 119–123 (2014).

    Article  ADS  Google Scholar 

  5. Riek, C. et al. Direct sampling of electric-field vacuum fluctuations. Science 350, 420–423 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    Article  ADS  Google Scholar 

  7. Lépine, F., Ivanov, M. Y. & Vrakking, M. J. J. Attosecond molecular dynamics: fact or fiction? Nat. Photonics 8, 195–204 (2014).

    Article  ADS  Google Scholar 

  8. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    Article  ADS  Google Scholar 

  9. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article  ADS  Google Scholar 

  10. Sederberg, S. et al. Attosecond optoelectronic field measurement in solids. Nat. Commun. 11, 430 (2020).

    Article  ADS  Google Scholar 

  11. Pupeza, I. et al. Field-resolved infrared spectroscopy of biological systems. Nature 577, 52–59 (2020).

    Article  ADS  Google Scholar 

  12. Park, S. B. et al. Direct sampling of a light wave in air. Optica 5, 402–408 (2018).

    Article  ADS  Google Scholar 

  13. Cho, W. et al. Temporal characterization of femtosecond laser pulses using tunneling ionization in the UV, visible, and mid-IR ranges. Sci. Rep. 9, 16067 (2019).

    Article  ADS  Google Scholar 

  14. Keiber, S. et al. Electro-optic sampling of near-infrared waveforms. Nat. Photonics 10, 159–162 (2016).

    Article  ADS  Google Scholar 

  15. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  16. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article  ADS  Google Scholar 

  17. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  18. Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photonics 8, 205–213 (2014).

    Article  ADS  Google Scholar 

  19. Dombi, P. et al. Strong-field nano-optics. Rev. Mod. Phys. 92, 025003 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  20. Krüger, M., Lemell, C., Wachter, G., Burgdörfer, J. & Hommelhoff, P. Attosecond physics phenomena at nanometric tips. J. Phys. B 51, 172001 (2018).

    Article  ADS  Google Scholar 

  21. Schoetz, J. et al. Perspective on petahertz electronics and attosecond nanoscopy. ACS Photonics 6, 3057–3069 (2019).

    Article  Google Scholar 

  22. Ciappina, M. F. et al. Attosecond physics at the nanoscale. Rep. Prog. Phys. 80, 054401 (2017).

    Article  ADS  Google Scholar 

  23. Stockman, M. I. et al. Roadmap on plasmonics. J. Opt. 20, 043001 (2018).

    Article  ADS  Google Scholar 

  24. Ludwig, M. et al. Sub-femtosecond electron transport in a nanoscale gap. Nat. Phys. 16, 341–345 (2020).

    Article  Google Scholar 

  25. Putnam, W. P., Hobbs, R. G., Keathley, P. D., Berggren, K. K. & Kärtner, F. X. Optical-field-controlled photoemission from plasmonic nanoparticles. Nat. Phys. 13, 335–339 (2017).

    Article  Google Scholar 

  26. Keathley, P. D. et al. Vanishing carrier-envelope-phase-sensitive response in optical-field photoemission from plasmonic nanoantennas. Nat. Phys. 15, 1128–1133 (2019).

    Article  Google Scholar 

  27. Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article  Google Scholar 

  28. Yang, Y. et al. Light phase detection with on-chip petahertz electronic networks. Nat. Commun. 11, 3407 (2020).

    Article  ADS  Google Scholar 

  29. Ludwig, M. et al. Active control of ultrafast electron dynamics in plasmonic gaps using an applied bias. Phys. Rev. B 101, 241412 (2020).

    Article  ADS  Google Scholar 

  30. Gomer, R. Field Emission and Field Ionization, Vol. 34 (Harvard Univ. Press, 1961).

  31. Rybka, T. et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photonics 10, 667–670 (2016).

    Article  ADS  Google Scholar 

  32. Yudin, G. L. & Ivanov, M. Y. Nonadiabatic tunnel ionization: looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001).

    Article  ADS  Google Scholar 

  33. Yalunin, S. V., Gulde, M. & Ropers, C. Strong-field photoemission from surfaces: theoretical approaches. Phys. Rev. B 84, 195426 (2011).

    Article  ADS  Google Scholar 

  34. Fowler, R. H. & Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173–181 (1928).

    Article  ADS  MATH  Google Scholar 

  35. Bunkin, F. V. & Fedorov, M. V. Cold emission of electrons from surface of a metal in a strong radiation field. Sov. Phys. JETP 21, 896–899 (1965).

    ADS  Google Scholar 

  36. Putnam, W. P. et al. Few-cycle, carrier–envelope-phase-stable laser pulses from a compact supercontinuum source. J. Opt. Soc. Am. B 36, A93–A97 (2019).

    Article  Google Scholar 

  37. Anderson, A., Deryckx, K. S., Xu, X. G., Steinmeyer, G. & Raschke, M. B. Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating. Nano Lett. 10, 2519–2524 (2010).

    Article  ADS  Google Scholar 

  38. Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photonics 13, 146–157 (2019).

    Article  ADS  Google Scholar 

  39. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

    Article  ADS  Google Scholar 

  40. Bjork, B. J. et al. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444–448 (2016).

    Article  ADS  Google Scholar 

  41. Kowligy, A. S. et al. Infrared electric field sampled frequency comb spectroscopy. Sci. Adv. 5, eaaw8794 (2019).

    Article  ADS  Google Scholar 

  42. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

    Google Scholar 

  43. Sell, A., Krauss, G., Scheu, R., Huber, R. & Leitenstorfer, A. 8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation. Opt. Express 17, 1070–1077 (2009).

    Article  ADS  Google Scholar 

  44. Birge, J. R., Ell, R. & Kärtner, F. X. Two-dimensional spectral shearing interferometry for few-cycle pulse characterization. Opt. Lett. 31, 2063–2065 (2006).

    Article  ADS  Google Scholar 

  45. Turchetti, M. et al. Impact of DC bias on weak optical-field-driven electron emission in nano-vacuum-gap detectors. J. Opt. Soc. Am. B 38, 1009–1016 (2021).

    Article  ADS  Google Scholar 

  46. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under award numbers FA9550-19-1-0065 and FA9550-18-1-0436. F.X.K. acknowledges support by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the Synergy Grant ‘Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy’ (AXSIS) (609920) and by the Cluster of Excellence ‘CUI: Advanced Imaging of Matter’ of the Deutsche Forschungsgemeinschaft (DFG)—EXC 2056—project ID 390715994. This work was also partially supported by a seed grant provided by SENSE.nano, a centre of excellence powered by MIT.nano, as well as the PIER Hamburg–MIT Program. We thank M. Colangelo and J. Simonaitis for their scientific discussion and edits to the manuscript. We thank N. Abedzadeh for taking photos of the chip.

Author information

Authors and Affiliations

Authors

Contributions

F.R., M.R.B. and P.D.K. conceived the experiments. Y.Y. and D.C.M. simulated the optical response of the devices. M.T. fabricated the devices. M.R.B., F.R. and M.T. performed the experiments with assistance from P.D.K. The theory was derived by F.R. who also and simulated the results with input from P.D.K., M.R.B. and W.P.P. The data were analysed by F.R. and M.R.B. with input from P.D.K., W.P.P., M.T. and Y.Y. The first draft of the manuscript and Supplementary Information were written by M.R.B. and F.R. with substantial contributions from M.T., Y.Y., P.D.K. and W.P.P. Input and feedback throughout the process was provided by K.K.B. and F.X.K. All authors contributed to the writing and editing of the manuscript.

Corresponding authors

Correspondence to Mina R. Bionta, Felix Ritzkowsky or Phillip D. Keathley.

Ethics declarations

Competing interests

The authors declare that a patent application has been filed based on the devices described in this manuscript.

Additional information

Peer review informationNature Photonics thanks Daniele Brida, Peter Hommelhoff and Nick Karpowicz for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, discussion and refs. 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bionta, M.R., Ritzkowsky, F., Turchetti, M. et al. On-chip sampling of optical fields with attosecond resolution. Nat. Photonics 15, 456–460 (2021). https://doi.org/10.1038/s41566-021-00792-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00792-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing