Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optically referenced 300 GHz millimetre-wave oscillator

Abstract

Optical frequency division via optical frequency combs has enabled a leap in microwave metrology, leading to noise performance never explored before. Extending this method to the millimetre-wave and terahertz-wave domains is of great interest. Dissipative Kerr solitons in integrated photonic chips offer the unique feature of delivering optical frequency combs with ultrahigh repetition rates from 10 GHz to 1 THz, making them relevant gears for performing optical frequency division in the millimetre-wave and terahertz-wave domains. We experimentally demonstrate the optical frequency division of an optically carried 3.6 THz reference down to 300 GHz through a dissipative Kerr soliton, photodetected with an ultrafast uni-travelling-carrier photodiode. A new measurement system, based on the characterization of a microwave reference phase locked to the 300 GHz signal under test, yields attosecond-level timing-noise sensitivity, overcoming conventional technical limitations. This work places dissipative Kerr solitons as a leading technology in the millimetre-wave and terahertz-wave field, promising breakthroughs in fundamental and civilian applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coherent OFD of a 3.6 THz reference down to a photodetected 300 GHz optical pulse train.
Fig. 2: Optical phase-locked loop for synchronization of the 300 GHz pulse train to the 3.6 THz reference.
Fig. 3: Measurement methods and characterization of the spectral purity of the 300 GHz wave.
Fig. 4: Characterization of the frequency instability of the 300 GHz wave.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Nagatsuma, T. et al. Millimeter-wave and terahertz-wave applications enabled by photonics. IEEE J. Quantum Electron. 52, 0600912 (2015).

    Google Scholar 

  2. Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon 7, 977–981 (2013).

    Article  ADS  Google Scholar 

  3. Dhillon, S. et al. The 2017 terahertz science and technology roadmap. J. Phys. D 50, 043001 (2017).

    Article  ADS  Google Scholar 

  4. Dang, S., Amin, O., Shihada, B. & Alouini, M. S. What should 6G be? Nat. Electron. 3, 20–29 (2020).

    Article  Google Scholar 

  5. Zhang, Z. et al. 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 14, 28–41 (2019).

    Article  Google Scholar 

  6. Wang, C. et al. An on-chip fully electronic molecular clock based on sub-terahertz rotational spectroscopy. Nat. Electron. 1, 421–427 (2018).

    Article  Google Scholar 

  7. De Graauw, T. et al. The Herschel-heterodyne instrument for the far-infrared (HIFI). Astron. Astrophys. 518, L6 (2010).

    Article  ADS  Google Scholar 

  8. Brünken, S. et al. H2D+ observations give an age of at least one million years for a cloud core forming Sun-like stars. Nature 516, 219–221 (2014).

    Article  ADS  Google Scholar 

  9. Nanni, E. A. et al. Terahertz-driven linear electron acceleration. Nat. Commun. 6, 8486 (2015).

    Article  ADS  Google Scholar 

  10. Zhang, D. et al. Segmented terahertz electron accelerator and manipulator (STEAM). Nat. Photon. 12, 336–342 (2018).

    Article  ADS  Google Scholar 

  11. Grajal, J. et al. Compact radar front-end for an imaging radar at 300 GHz. IEEE Trans. Terahertz Sci. Technol. 7, 268–273 (2017).

    Article  ADS  Google Scholar 

  12. Appleby, R., Robertson, D. A. & Wikner, D. Millimeter wave imaging: a historical review. In Proc. Passive and Active Millimeter-Wave Imaging XX (eds Wikner, D. A. & Robertson, D. A.) 1018902 (SPIE, 2017).

  13. Patole, S. M., Torlak, M., Wang, D. & Ali, M. Automotive radars: a review of signal processing techniques. IEEE Signal Process. Mag. 34, 22–35 (2017).

    Article  ADS  Google Scholar 

  14. Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    Article  ADS  Google Scholar 

  15. Huntemann, N., Sanner, C., Lipphardt, B., Tamm, C. & Peik, E. Single-ion atomic clock with 3 × 10−18 systematic uncertainty. Phys. Rev. Lett. 116, 063001 (2016).

    Article  ADS  Google Scholar 

  16. McGrew, W. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    Article  ADS  Google Scholar 

  17. Brewer, S. et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 123, 033201 (2019).

    Article  ADS  Google Scholar 

  18. Yao, X. S. & Maleki, L. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B 13, 1725–1735 (1996).

    Article  ADS  Google Scholar 

  19. Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).

    Article  ADS  Google Scholar 

  20. Li, Y. et al. Low-noise millimeter-wave synthesis from a dual-wavelength fiber Brillouin cavity. Opt. Lett. 44, 359–362 (2019).

    Article  ADS  Google Scholar 

  21. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).

    Article  ADS  Google Scholar 

  22. Li, J., Lee, H., Chen, T. & Vahala, K. J. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109, 233901 (2012).

    Article  ADS  Google Scholar 

  23. Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article  ADS  Google Scholar 

  24. Lucas, E. et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun. 11, 374 (2020).

    Article  ADS  Google Scholar 

  25. Ishibashi, T., Muramoto, Y., Yoshimatsu, T. & Ito, H. Unitraveling-carrier photodiodes for terahertz applications. IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).

    Article  ADS  Google Scholar 

  26. Wang, N., Cakmakyapan, S., Lin, Y. J., Javadi, H. & Jarrahi, M. Room-temperature heterodyne terahertz detection with quantum-level sensitivity. Nat. Astron. 3, 977–982 (2019).

    Article  ADS  Google Scholar 

  27. Ummethala, S. et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photon.13, 519–524 (2019).

    Article  Google Scholar 

  28. Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon. 11, 44–47 (2017).

    Article  ADS  Google Scholar 

  29. Nakamura, T. et al. Coherent optical clock down-conversion for microwave frequencies with 10−18 instability. Science 368, 889–892 (2020).

    Article  ADS  Google Scholar 

  30. Fortier, T. et al. Optically referenced broadband electronic synthesizer with 15 digits of resolution. Laser Photon. Rev. 10, 780–790 (2016).

    Article  ADS  Google Scholar 

  31. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  32. Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).

    Article  Google Scholar 

  33. Wang, B., Yang, Z., Zhang, X. & Yi, X. Vernier frequency division with dual-microresonator solitons. Nat. Commun. 11, 3975 (2020).

    Article  ADS  Google Scholar 

  34. Xu, X. et al. Broadband microwave frequency conversion based on an integrated optical micro-comb source. J. Lightwave Technol. 38, 332–338 (2019).

    Article  ADS  Google Scholar 

  35. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  36. Zhang, S. et al. Terahertz wave generation using a soliton microcomb. Opt. Express 27, 35257–35266 (2019).

    Article  ADS  Google Scholar 

  37. Tetsumoto, T. et al. 300 GHz wave generation based on a Kerr microresonator frequency comb stabilized to a low noise microwave reference. Opt. Lett. 45, 4377–4380 (2020).

    Article  ADS  Google Scholar 

  38. Swann, W. C., Baumann, E., Giorgetta, F. R. & Newbury, N. R. Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator. Opt. Express 19, 24387–24395 (2011).

    Article  ADS  Google Scholar 

  39. Kuse, N. & Fermann, M. E. Electro-optic comb based real time ultra-high sensitivity phase noise measurement system for high frequency microwaves. Sci. Rep. 7, 2847 (2017).

    Article  ADS  Google Scholar 

  40. Kuse, N., Briles, T. C., Papp, S. B. & Fermann, M. E. Control of Kerr-microresonator optical frequency comb by a dual-parallel Mach-Zehnder interferometer. Opt. Express 27, 3873–3883 (2019).

    Article  ADS  Google Scholar 

  41. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article  ADS  Google Scholar 

  42. Lee, H. et al. Spiral resonators for on-chip laser frequency stabilization. Nat. Commun. 4, 2468 (2013).

    Article  ADS  Google Scholar 

  43. Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).

    Article  ADS  Google Scholar 

  44. Danion, G. et al. Mode-hopping suppression in long Brillouin fiber laser with non-resonant pumping. Opt. Lett. 41, 2362–2365 (2016).

    Article  ADS  Google Scholar 

  45. Rubiola, E., Salik, E., Huang, S., Yu, N. & Maleki, L. Photonic-delay technique for phase-noise measurement of microwave oscillators. J. Opt. Soc. Am. B 22, 987–997 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Kuse and M. Yeo for their technical contribution at the early stage of this work and Y. Uehara for his help. We are very grateful to V. Rolland for proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.T. and A.R. conceived the ideas, built, implemented and operated the experimental setup, and wrote the manuscript. T.N. provided the UTC-PD and insightful contributions on millimetre-wave technology. M.E.F. contributed to the conception of the project and the analysis of the data. T.T. designed and G.N. and M.G. fabricated the SiN microresonator. All authors contributed to the review of the manuscript. A.R. initiated and supervised the project.

Corresponding author

Correspondence to Antoine Rolland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Sections 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tetsumoto, T., Nagatsuma, T., Fermann, M.E. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photon. 15, 516–522 (2021). https://doi.org/10.1038/s41566-021-00790-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00790-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing