Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses

Subjects

Abstracte

InGaN-based blue light-emitting diodes (LEDs), with their high efficiency and brightness, are entering the display industry. However, a significant gap remains between the expectation of highly efficient light sources and their experimental realization into tiny pixels for ultrahigh-density displays for augmented reality. Herein, we report using tailored ion implantation (TIIP) to fabricate highly efficient, electrically-driven pixelated InGaN micro-LEDs (μLEDs) at the mid-submicrometre scale (line/space of 0.5/0.5 μm), corresponding to 8,500 pixels per inch (ppi) (RGB). Creating a laterally confined non-radiative region around each pixel with a controlled amount of mobile vacancies, TIIP pixelation produces relatively invariant luminance, and high pixel distinctiveness, at submicrometre-sized pixels. Moreover, with the incomparable integration capability of TIIP pixelation due to its planar geometry, we demonstrate 2,000 ppi μLED displays with monolithically integrated thin-film transistor pixel circuits, and 5,000 ppi compatible core technologies. We expect that the demonstrated method will pave the way toward high-performance μLED displays for seamless augmented-reality glasses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustrations of submicrometre pixelation of InGaN LEDs by mesa etching and IIP.
Fig. 2: Characterization of defects induced by IIP.
Fig. 3: Experimental verification of TIIP.
Fig. 4: Monolithic integration of TIIP-pixelated LEDs with TFTs and QDs.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Choi, J. H. et al. Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates. Nat. Photon. 5, 763–769 (2011).

    Article  ADS  Google Scholar 

  2. Choi, J. H. et al. Fully flexible GaN light‐emitting diodes through nanovoid‐mediated transfer. Adv. Opt. Mater. 2, 267–274 (2014).

    Article  Google Scholar 

  3. Ding, K., Avrutin, V., Izyumskaya, N., Özgür, Ü. & Morkoç, H. Micro-LEDs, a manufacturability perspective. Appl. Sci. 9, 1206 (2019).

    Article  Google Scholar 

  4. Kang, C. et al. Monolithic integration of AlGaInP-based red and InGaN-based green LEDs via adhesive bonding for multicolor emission. Sci. Rep. 7, 10333 (2017).

    Article  ADS  Google Scholar 

  5. Kang, C.-M. et al. Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display. Opt. Express 25, 2489–2495 (2017).

    Article  ADS  Google Scholar 

  6. Yadavalli, K., Chuang, C.-L. & El-Ghoroury, H. S. Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications. Proc. SPIE 11310, 113100Z (2020).

    Google Scholar 

  7. Gou, F. et al. High performance color‐converted micro‐LED displays. J. Soc. Inf. Disp. 27, 199–206 (2019).

    Article  Google Scholar 

  8. Na, J.-S., Hong, S.-K. & Kwon, O.-K. A 4410-ppi resolution pixel circuit for high luminance uniformity of OLEDOS microdisplays. IEEE J. Electron Devices Soc. 7, 1026–1032 (2019).

    Article  Google Scholar 

  9. Huang, Y., Liao, E., Chen, R. & Wu, S.-T. Liquid-crystal-on-silicon for augmented reality displays. Appl. Sci. 8, 2366 (2018).

    Article  Google Scholar 

  10. Olivier, F., Daami, A., Licitra, C. & Templier, F. Shockley–Read–Hall and Auger non-radiative recombination in GaN based LEDs: a size effect study. Appl. Phys. Lett. 111, 022104 (2017).

    Article  ADS  Google Scholar 

  11. Kou, J. et al. Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes. Opt. Express 27, A643–A653 (2019).

    Article  Google Scholar 

  12. Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7, 701–706 (2008).

    Article  ADS  Google Scholar 

  13. Lim, W. et al. SiO2 nanohole arrays with high aspect ratio for InGaN/GaN nanorod-based phosphor-free white light-emitting-diodes. J. Vac. Sci. Technol. B 34, 042204 (2016).

    Article  Google Scholar 

  14. Kum, H. et al. Wafer-scale thermodynamically stable GaN nanorods via two-step self-limiting epitaxy for optoelectronic applications. Sci. Rep. 7, 40893 (2017).

    Article  ADS  Google Scholar 

  15. Hook, T. B. et al. Lateral ion implant straggle and mask proximity effect. IEEE Trans. Electron Devices 50, 1946–1951 (2003).

    Article  ADS  Google Scholar 

  16. Sheu,Y.-M. et al. Modeling the well edge proximity effect in highly-scaled MOSFETs. In Proc. Custom Integrated Circuits Conference 831–834 (IEEE, 2005).

  17. Polishchuk, I., Mathur, N., Sandstrom, C., Manos, P. & Pohland O. CMOS Vt-control improvement through implant lateral scatter elimination. In IEEE International Symposium on Semiconductor Manufacturing (IEEE, 2005).

  18. Lulli, G. Two-dimensional simulation of undermask penetration in 4H-SiC implanted with Al+ ions. IEEE Trans. Electron Devices 58, 190–194 (2011).

    Article  ADS  Google Scholar 

  19. Lazar, M., Laariedh, F., Cremillieu, P., Planson, D. & Leclercq, J.-L. The channeling effect of Al and N ion implantation in 4H–SiC during JFET integrated device processing. Nucl. Instrum. Methods Phys. Res. B 365, 256–259 (2015).

    Article  ADS  Google Scholar 

  20. Müting, J., Bobal, V., Azarov, A., Svensson, B. G. & Grossner, U. Lateral straggling of ion implantation distributions in 4H-SiC investigated by SIMS. Mater. Sci. Forum 963, 437–440 (2019).

    Article  Google Scholar 

  21. Müting, J., Bobal, V., Sky, T. N., Vines, L. & Grossner, U. Lateral straggling of implanted aluminum in 4H-SiC. Appl. Phys. Lett. 116, 012101 (2020).

    Article  ADS  Google Scholar 

  22. Majid, A., Zhu, J. J., Rana, U. A. & Khan, S. U.-D. Resonant Raman scattering study of V, Cr and Co ions implanted into GaN. RSC Adv. 6, 73589–73594 (2016).

    Article  ADS  Google Scholar 

  23. Kucheyev, S. O. et al. Cathodoluminescence depth profiling of ion-implanted GaN. Appl. Phys. Lett. 78, 34–36 (2001).

    Article  ADS  Google Scholar 

  24. Slotte, J. et al. Fluence, flux, and implantation temperature dependence of ion-implantation-induced defect production in 4H–SiC. J. Appl. Phys. 97, 033513 (2005).

    Article  ADS  Google Scholar 

  25. Kucheyev, O. J., Williams, S., Jagadish, C., Zou, J. & Li, G. Surface disordering and nitrogen loss in GaN under ion bombardment. Phys. Rev. B 62, 7510–7522 (2000).

    Article  ADS  Google Scholar 

  26. Liu, Z., Ma, J., Huang, T., Liu, C. & Lau, K. M. Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors. Appl. Phys. Lett. 104, 091103 (2014).

    Article  ADS  Google Scholar 

  27. Hwang, I. et al. p-GaN gate HEMTS with tungsten gate metal for high threshold voltage and low gate current. IEEE Electron Device Lett. 34, 202–204 (2013).

    Article  ADS  Google Scholar 

  28. Chung, D.-S. et al. Carbon nanotube electron emitters with a gated structure using backside exposure processes. Appl. Phys. Lett. 80, 4045–4047 (2002).

    Article  ADS  Google Scholar 

  29. Ramm, P. et al. (eds) Handbook of Wafer Bonding (Wiley, 2012).

  30. Kim, J.-H., Lee, S.-J. & Park, S.-H. InGaN-based resonant-cavity light-emitting diodes with a ZrO2/SiO2 distributed Bragg reflector and metal reflector. Jpn J. Appl. Phys. 49, 122102 (2010).

    Article  ADS  Google Scholar 

  31. Won, Y. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Lee, K. Kim and S. Heo for the 2D SIMS, XRD and DLTS analyses for characterizing ion-implanted samples, respectively, and useful discussions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. 2017R1A2B3011629 and no. 2020R1A5A6017701).

Author information

Authors and Affiliations

Authors

Contributions

J.P. performed the main IIP experiment and characterization. J.H.C. designed the experiment and wrote the manuscript. K.K. designed the pixel-driving circuitry. J.H.H., J.H.P., N.K., E.L., D.K., J.K., D.C. and S.J. fabricated and characterized the EL devices. M.K. guided the theoretical investigations and edited the manuscript. E.Y. guided the experimental investigations. J.S. and S.H. designed the project. All authors provided feedback.

Corresponding author

Correspondence to Jun Hee Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Ulrich Schwarz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–13, discussion and Tables 1 and 2.

Supplementary Video 1

Moving image 1 of 300 ppi prototype.

Supplementary Video 2

Moving image 2 of 300 ppi prototype.

Supplementary Video 3

Moving image 3 of 2,000 ppi prototype.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Choi, J.H., Kong, K. et al. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat. Photonics 15, 449–455 (2021). https://doi.org/10.1038/s41566-021-00783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00783-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing