Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structured light

Abstract

All light has structure, but only recently has it been possible to control it in all its degrees of freedom and dimensions, fuelling fundamental advances and applications alike. Here we review the recent advances in ‘pushing the limits’ with structured light, from traditional two-dimensional transverse fields towards four-dimensional spatiotemporal structured light and multidimensional quantum states, beyond orbital angular momentum towards control of all degrees of freedom, and beyond a linear toolkit to include nonlinear interactions, particularly for high-harmonic structured light. Using a simple interference argument, centuries old, we weave a story that highlights the common nature of seemingly diverse structures, presenting a modern viewpoint on the classes of structured light, and outline the possible future trends and open challenges.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Beyond 2D structured light.
Fig. 2: A nonlinear toolbox.
Fig. 3: Pushing the limits of structured light.

References

  1. 1.

    Karny, Z., Lavi, S. & Kafri, O. Direct determination of the number of transverse modes of a light beam. Opt. Lett. 8, 409–411 (1983).

    ADS  Google Scholar 

  2. 2.

    Lazarev, G., Chen, P.-J., Strauss, J., Fontaine, N. & Forbes, A. Beyond the display: phase-only liquid crystal on silicon devices and their applications in photonics. Opt. Express 27, 16206–16249 (2019).

    ADS  Google Scholar 

  3. 3.

    Ren, Y.-X., Lu, R.-D. & Gong, L. Tailoring light with a digital micromirror device. Ann. Phys. 527, 447–470 (2015).

    MathSciNet  Google Scholar 

  4. 4.

    Turtaev, S. et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt. Express 25, 29874–29884 (2017).

    ADS  Google Scholar 

  5. 5.

    Rubano, A., Cardano, F., Piccirillo, B. & Marrucci, L. Q-plate technology: a progress review. J. Opt. Soc. Am. B 36, D70–D87 (2019).

    Google Scholar 

  6. 6.

    Cardano, F. & Marrucci, L. Spin-orbit photonics. Nat. Photon. 9, 776–778 (2015).

    ADS  Google Scholar 

  7. 7.

    Bliokh, K. Y., Rodríguez-Fortuno, F., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    ADS  Google Scholar 

  8. 8.

    Marrucci, L. et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13, 064001 (2011).

    ADS  Google Scholar 

  9. 9.

    Forbes, A. Structured light from lasers. Laser Photon. Rev. 13, 1900140 (2019).

    ADS  Google Scholar 

  10. 10.

    Padgett, M. J. Orbital angular momentum 25 years on. Opt. Express 25, 11265–11274 (2017).

    ADS  Google Scholar 

  11. 11.

    Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019).

    ADS  Google Scholar 

  12. 12.

    Young, T. I. The Bakerian Lecture. Experiments and calculations relative to physical optics. Phil. Trans. R. Soc. A 94, 1–16 (1804).

    ADS  Google Scholar 

  13. 13.

    Rubinsztein-Dunlop, H. et al. Roadmap on structured light. J. Opt. 19, 013001 (2017).

    ADS  Google Scholar 

  14. 14.

    Andrews, D. L. Structured Light and its Applications: An Introduction to Phase-structured Beams and Nanoscale Optical Forces (Academic Press, 2011).

  15. 15.

    Kogelnik, H. & Li, T. Laser beams and resonators. Appl. Opt. 5, 1550–1567 (1966).

    ADS  Google Scholar 

  16. 16.

    He, H., Friese, M., Heckenberg, N. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995).

    ADS  Google Scholar 

  17. 17.

    Heckenberg, N., McDuff, R., Smith, C. & White, A. Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992).

    ADS  Google Scholar 

  18. 18.

    Padgett, M. J. & Courtial, J. Poincare-sphere equivalent for light beams containing orbital angular momentum. Opt. Lett. 24, 430–432 (1999).

    ADS  Google Scholar 

  19. 19.

    Holleczek, A., Aiello, A., Gabriel, C., Marquardt, C. & Leuchs, G. Classical and quantum properties of cylindrically polarized states of light. Opt. Express 19, 9714–9736 (2011).

    ADS  Google Scholar 

  20. 20.

    Milione, G., Sztul, H. I., Nolan, D. A. & Alfano, R. R. Higher-order poincare sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011).

    ADS  Google Scholar 

  21. 21.

    Alonso, M. A. & Dennis, M. R. Ray-optical Poincare sphere for structured Gaussian beams. Optica 4, 476–486 (2017).

    ADS  Google Scholar 

  22. 22.

    Gutierrez-Cuevas, R., Dennis, M. & Alonso, M. Generalized Gaussian beams in terms of Jones vectors. J. Opt. 21, 084001 (2019).

    ADS  Google Scholar 

  23. 23.

    Nye, J. Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics, 1999).

  24. 24.

    Dennis, M., O’Holleran, K. & Padgett, M. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Prog. Opt. 53, 293–363 (2009).

    ADS  Google Scholar 

  25. 25.

    Stratton, J. Electromagnetic Theory (John Wiley and Sons, 1941).

  26. 26.

    Mazilu, M., Stevenson, D. J., Gunn-Moore, F. & Dholakia, K. Light beats the spread: “nondiffracting” beams. Laser Photon. Rev. 4, 529–547 (2010).

    ADS  Google Scholar 

  27. 27.

    Gutiérrez-Vega, J. C., Iturbe-Castillo, M. D. & Chávez-Cerda, S. Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett. 25, 1493–1495 (2000).

    ADS  Google Scholar 

  28. 28.

    Bandres, M. A. & Gutiérrez-Vega, J. C. Ince–Gaussian beams. Opt. Lett. 29, 144–146 (2004).

    ADS  Google Scholar 

  29. 29.

    Bandres, M. A., Gutiérrez-Vega, J. C. & Chávez-Cerda, S. Parabolic nondiffracting optical wave fields. Opt. Lett. 29, 44–46 (2004).

    ADS  Google Scholar 

  30. 30.

    Gutiérrez-Vega, J. C. & Bandres, M. A. Helmholtz–Gauss waves. J. Opt. Soc. Am. A 22, 289–298 (2005).

    ADS  MathSciNet  Google Scholar 

  31. 31.

    Stoler, D. Operator methods in physical optics. J. Opt. Soc. Am. 71, 334–341 (1981).

    ADS  Google Scholar 

  32. 32.

    Dennis, M. R. & Alonso, M. A. Gaussian mode families from systems of rays. J. Phys. Photon. 1, 025003 (2019).

    Google Scholar 

  33. 33.

    Efremidis, N. K., Chen, Z., Segev, M. & Christodoulides, D. N. Airy beams and accelerating waves: an overview of recent advances. Optica 6, 686–701 (2019).

    ADS  Google Scholar 

  34. 34.

    Berry, M. V. & Balazs, N. L. Non-spreading wave packets. Am. J. Phys. 47, 264–267 (1979).

    ADS  Google Scholar 

  35. 35.

    Spreeuw, R. J. A classical analogy of entanglement. Found. Phys. 28, 361–374 (1998).

    MathSciNet  Google Scholar 

  36. 36.

    Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 5, 523–530 (2011).

    ADS  Google Scholar 

  37. 37.

    Slussarenko, S. et al. Guiding light via geometric phases. Nat. Photon. 10, 571–575 (2016).

    ADS  Google Scholar 

  38. 38.

    He, C. et al. Complex vectorial optics through gradient index lens cascades. Nat. Commun. 10, 4264 (2019).

    ADS  Google Scholar 

  39. 39.

    D’Errico, A. et al. Two-dimensional topological quantum walks in the momentum space of structured light. Optica 7, 108–114 (2020).

    ADS  Google Scholar 

  40. 40.

    Cardano, F. et al. Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 1, e1500087 (2015).

    ADS  Google Scholar 

  41. 41.

    Fontaine, N. K. et al. Laguerre-Gaussian mode sorter. Nat. Commun. 10, 1865 (2019).

    ADS  Google Scholar 

  42. 42.

    Brandt, F., Hiekkamäki, M., Bouchard, F., Huber, M. & Fickler, R. High-dimensional quantum gates using full-field spatial modes of photons. Optica 7, 98–107 (2020).

    ADS  Google Scholar 

  43. 43.

    Berry, M. & Klein, S. Integer, fractional and fractal Talbot effects. J. Mod. Opt. 43, 2139–2164 (1996).

    ADS  MathSciNet  MATH  Google Scholar 

  44. 44.

    Lopez-Mariscal, C. & Helmerson, K. Shaped nondiffracting beams. Opt. Lett. 35, 1215–1217 (2010).

    ADS  Google Scholar 

  45. 45.

    Hu, Y. et al. Subwavelength generation of nondiffracting structured light beams. Optica 7, 1261–1266 (2020).

    ADS  Google Scholar 

  46. 46.

    Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

    ADS  Google Scholar 

  47. 47.

    Fahrbach, F. O., Simon, P. & Rohrbach, A. Microscopy with self-reconstructing beams. Nat. Photon. 4, 780–785 (2010).

    ADS  Google Scholar 

  48. 48.

    Vettenburg, T. et al. Light-sheet microscopy using an airy beam. Nat. Methods 11, 541–544 (2014).

    Google Scholar 

  49. 49.

    Zamboni-Rached, M. Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency bessel beams: frozen waves. Opt. Express 12, 4001–4006 (2004).

    ADS  Google Scholar 

  50. 50.

    Dorrah, A. H., Zamboni-Rached, M. & Mojahedi, M. Wavelength and topological charge management along the axis of propagation of multichromatic non-diffracting beams. J. Opt. Soc. Am. B 36, 1867–1872 (2019).

    ADS  Google Scholar 

  51. 51.

    Aborahama, Y., Dorrah, A. H. & Mojahedi, M. Designing the phase and amplitude of scalar optical fields in three dimensions. Opt. Express 28, 24721–24730 (2020).

    ADS  Google Scholar 

  52. 52.

    Nylk, J. et al. Light-sheet microscopy with attenuation-compensated propagation-invariant beams. Sci. Adv. 4, eaar4817 (2018).

    ADS  Google Scholar 

  53. 53.

    Perez-Leija, A. et al. Discrete-like diffraction dynamics in free space. Opt. Express 21, 17951–17960 (2013).

    ADS  Google Scholar 

  54. 54.

    Eichelkraut, T. et al. Coherent random walks in free space. Optica 1, 268–271 (2014).

    ADS  Google Scholar 

  55. 55.

    Schulze, C. et al. Accelerated rotation with orbital angular momentum modes. Phys. Rev. A 91, 043821 (2015).

    ADS  Google Scholar 

  56. 56.

    Vetter, C., Eichelkraut, T., Ornigotti, M. & Szameit, A. Generalized radially self-accelerating helicon beams. Phys. Rev. Lett. 113, 183901 (2014).

    ADS  Google Scholar 

  57. 57.

    Efremidis, N. K. & Christodoulides, D. N. Abruptly autofocusing waves. Opt. Lett. 35, 4045–4047 (2010).

    ADS  Google Scholar 

  58. 58.

    Ayuso, D. et al. Synthetic chiral light for efficient control of chiral light–matter interaction. Nat. Photon. 13, 866–871 (2019).

    ADS  Google Scholar 

  59. 59.

    Maucher, F., Skupin, S., Gardiner, S. & Hughes, I. Creating complex optical longitudinal polarization structures. Phys. Rev. Lett. 120, 163903 (2018).

    ADS  Google Scholar 

  60. 60.

    Maucher, F., Skupin, S., Gardiner, S. & Hughes, I. An intuitive approach to structuring the three electric field components of light. New J. Phys. 21, 013032 (2019).

    ADS  Google Scholar 

  61. 61.

    Otte, E., Alpmann, C. & Denz, C. Polarization singularity explosions in tailored light fields. Laser Photon. Rev. 12, 1700200 (2018).

    ADS  Google Scholar 

  62. 62.

    Otte, E., Rosales-Guzman, C., Ndagano, B., Denz, C. & Forbes, A. Entanglement beating in free space through spin–orbit coupling. Light Sci. Appl. 7, 18009 (2018).

    ADS  Google Scholar 

  63. 63.

    Van Kruining, K., Cameron, R. & Gotte, J. Superpositions of up to six plane waves without electric-field interference. Optica 5, 1091–1098 (2018).

    ADS  Google Scholar 

  64. 64.

    Baüer, T. et al. Observation of optical polarization Möbius strips. Science 347, 964–966 (2015).

    ADS  Google Scholar 

  65. 65.

    Larocque, H. et al. Reconstructing the topology of optical polarization knots. Nat. Phys. 14, 1079–1082 (2018).

    Google Scholar 

  66. 66.

    Aiello, A., Banzer, P., Neugebauer, M. & Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photon. 9, 789–795 (2015).

    ADS  Google Scholar 

  67. 67.

    Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015).

    Google Scholar 

  68. 68.

    Eismann, J. et al. Transverse spinning of unpolarized light. Nat. Photon. 15, 156–161 (2021).

    ADS  Google Scholar 

  69. 69.

    Lindfors, K. et al. Local polarization of tightly focused unpolarized light. Nat. Photon. 1, 228–231 (2007).

    ADS  Google Scholar 

  70. 70.

    Weiner, A. M. Ultrafast optical pulse shaping: a tutorial review. Opt. Commun. 284, 3669–3692 (2011).

    ADS  Google Scholar 

  71. 71.

    Nassiri, M. G. & Brasselet, E. Multispectral management of the photon orbital angular momentum. Phys. Rev. Lett. 121, 213901 (2018).

    ADS  Google Scholar 

  72. 72.

    Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    ADS  Google Scholar 

  73. 73.

    Shaltout, A. M. et al. Spatiotemporal light control with frequency-gradient metasurfaces. Science 365, 374–377 (2019).

    ADS  Google Scholar 

  74. 74.

    Dallaire, M., McCarthy, N. & Piché, M. Spatiotemporal Bessel beams: theory and experiments. Opt. Express 17, 18148–18164 (2009).

    ADS  Google Scholar 

  75. 75.

    Chong, A., Wan, C., Chen, J. & Zhan, Q. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photon. 14, 350–354 (2020).

    ADS  Google Scholar 

  76. 76.

    Frei, F., Galler, A. & Feurer, T. Space–time coupling in femtosecond pulse shaping and its effects on coherent control. J. Chem. Phys. 130, 034302 (2009).

    ADS  Google Scholar 

  77. 77.

    Pariente, G., Gallet, V., Borot, A., Gobert, O. & Quéré, F. Space–time characterization of ultra-intense femtosecond laser beams. Nat. Photon. 10, 547–553 (2016).

  78. 78.

    Sun, B. et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time. Light Sci. Appl. 7, 17117 (2018).

    Google Scholar 

  79. 79.

    Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

  80. 80.

    Kondakci, H. E. & Abouraddy, A. F. Diffraction-free pulsed optical beams via space–time correlations. Opt. Express 24, 28659–28668 (2016).

    ADS  Google Scholar 

  81. 81.

    Kondakci, H. E. & Abouraddy, A. F. Diffraction-free space–time light sheets. Nat. Photon. 11, 733–740 (2017).

    ADS  Google Scholar 

  82. 82.

    Porras, M. A. & Conti, C. Couplings between the temporal and orbital angular momentum degrees of freedom in ultrafast optical vortices. Phys. Rev. A 101, 063803 (2020).

    ADS  Google Scholar 

  83. 83.

    Buono, W. et al. Chiral relations and radial-angular coupling in nonlinear interactions of optical vortices. Phys. Rev. A 101, 043821 (2020).

    ADS  Google Scholar 

  84. 84.

    Wu, H.-J. et al. Vectorial nonlinear optics: type-II second-harmonic generation driven by spin–orbit-coupled fields. Phys. Rev. A 100, 053840 (2019).

    ADS  Google Scholar 

  85. 85.

    Sephton, B. et al. Spatial mode detection by frequency upconversion. Opt. Lett. 44, 586–589 (2019).

    ADS  Google Scholar 

  86. 86.

    Pires, D., Rocha, J., Jesus-Silva, A. & Fonseca, E. Optical mode conversion through nonlinear two-wave mixing. Phys. Rev. A 100, 043819 (2019).

    ADS  Google Scholar 

  87. 87.

    Tang, Y. et al. Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals. Nat. Photon. 14, 658–662 (2020).

    ADS  Google Scholar 

  88. 88.

    Franke-Arnold, S. Optical angular momentum and atoms. Phil. Trans. R. Soc. A 375, 20150435 (2017).

    ADS  Google Scholar 

  89. 89.

    Boyer, V., Marino, A. M., Pooser, R. C. & Lett, P. D. Entangled images from four-wave mixing. Science 321, 544–547 (2008).

    ADS  Google Scholar 

  90. 90.

    Gauthier, G. et al. Direct imaging of a digital-micromirror device for configurable microscopic optical potentials. Optica 3, 1136–1143 (2016).

    ADS  Google Scholar 

  91. 91.

    Kong, F. et al. Controlling the orbital angular momentum of high harmonic vortices. Nat. Commun. 8, 14970 (2017).

  92. 92.

    Dorney, K. M. et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation. Nat. Photon. 13, 123–130 (2019).

    ADS  Google Scholar 

  93. 93.

    Rego, L. et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364, eaaw9486 (2019).

    ADS  Google Scholar 

  94. 94.

    Jhajj, N. et al. Spatiotemporal optical vortices. Phys. Rev. X 6, 031037 (2016).

    Google Scholar 

  95. 95.

    Hellwarth, R. & Nouchi, P. Focused one-cycle electromagnetic pulses. Phys. Rev. E 54, 889–895 (1996).

  96. 96.

    Papasimakis, N., Fedotov, V., Savinov, V., Raybould, T. & Zheludev, N. Electromagnetic toroidal excitations in matter and free space. Nat. Mater. 15, 263–271 (2016).

    ADS  Google Scholar 

  97. 97.

    Keren-Zur, S., Tal, M., Fleischer, S., Mittleman, D. M. & Ellenbogen, T. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nat. Commun. 10, 1778 (2019).

  98. 98.

    Trichili, A., Park, K.-H., Zghal, M., Ooi, B. S. & Alouini, M.-S. Communicating using spatial mode multiplexing: potentials, challenges, and perspectives. IEEE Commun. Surv. Tutor. 21, 3175–3203 (2019).

    Google Scholar 

  99. 99.

    Wang, J. et al. N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes. In 2014 The European Conference on Optical Communication (ECOC) 1–3 (IEEE, 2014).

  100. 100.

    Zhao, Y. et al. Experimental demonstration of 260-meter security free-space optical data transmission using 16-QAM carrying orbital angular momentum (OAM) beams multiplexing. In Optical Fiber Communication Conference Th1H–3 (Optical Society of America, 2016).

  101. 101.

    Lavery, M. P. et al. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci. Adv. 3, e1700552 (2017).

    ADS  Google Scholar 

  102. 102.

    Krenn, M. et al. Twisted light transmission over 143 km. Proc. Natl Acad. Sci. USA 113, 13648–13653 (2016).

    ADS  Google Scholar 

  103. 103.

    Wen, Y. et al. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems. Optica 7, 254–262 (2020).

    ADS  Google Scholar 

  104. 104.

    Zhao, N., Li, X., Li, G. & Kahn, J. M. Capacity limits of spatially multiplexed free-space communication. Nat. Photon. 9, 822–826 (2015).

  105. 105.

    Cox, M. A., Cheng, L., Rosales-Guzmán, C. & Forbes, A. Modal diversity for robust free-space optical communications. Phys. Rev. Appl. 10, 024020 (2018).

    ADS  Google Scholar 

  106. 106.

    Jung, Y. et al. Optical orbital angular momentum amplifier based on an air-hole erbium-doped fiber. J. Light. Tech. 35, 430–436 (2017).

    Google Scholar 

  107. 107.

    Ma, J., Xia, F., Chen, S., Li, S. & Wang, J. Amplification of 18 OAM modes in a ring-core erbium-doped fiber with low differential modal gain. Opt. Express 27, 38087–38097 (2019).

    ADS  Google Scholar 

  108. 108.

    Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    ADS  Google Scholar 

  109. 109.

    Krenn, M. et al. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system. Proc. Natl Acad. Sci. USA 111, 6243–6247 (2014).

    ADS  Google Scholar 

  110. 110.

    Zhong, H.-S. et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

    ADS  Google Scholar 

  111. 111.

    Wang, X.-L. et al. 18-qubit entanglement with six photons? Three degrees of freedom. Phys. Rev. Lett. 120, 260502 (2018).

    ADS  Google Scholar 

  112. 112.

    Malik, M. et al. Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016).

  113. 113.

    Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R. & Zeilinger, A. Automated search for new quantum experiments. Phys. Rev. Lett. 116, 090405 (2016).

    ADS  Google Scholar 

  114. 114.

    Erhard, M., Malik, M., Krenn, M. & Zeilinger, A. Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits. Nat. Photon. 12, 759–764 (2018).

    ADS  Google Scholar 

  115. 115.

    Zhang, Y. et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat. Commun. 8, 632 (2017).

    ADS  Google Scholar 

  116. 116.

    Luo, Y.-H. et al. Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019).

    ADS  Google Scholar 

  117. 117.

    Shi, B.-S., Ding, D.-S. & Zhang, W. Quantum storage of orbital angular momentum entanglement in cold atomic ensembles. J. Phys. B 51, 032004 (2018).

    ADS  Google Scholar 

  118. 118.

    Forbes, A. & Nape, I. Quantum mechanics with patterns of light: progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Sci. 1, 011701 (2019).

    ADS  Google Scholar 

  119. 119.

    Zhou, Y. et al. Using all transverse degrees of freedom in quantum communications based on a generic mode sorter. Opt. Express 27, 10383–10394 (2019).

    ADS  Google Scholar 

  120. 120.

    Leonhard, N. D., Shatokhin, V. N. & Buchleitner, A. Universal entanglement decay of photonic-orbital-angular-momentum qubit states in atmospheric turbulence. Phys. Rev. A 91, 012345 (2015).

    ADS  MathSciNet  Google Scholar 

  121. 121.

    Krenn, M., Handsteiner, J., Fink, M., Fickler, R. & Zeilinger, A. Twisted photon entanglement through turbulent air across Vienna. Proc. Natl Acad. Sci. USA 112, 14197–14201 (2015).

    ADS  Google Scholar 

  122. 122.

    Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017).

    ADS  Google Scholar 

  123. 123.

    Cox, M. A. et al. Structured light in turbulence. IEEE J. Sel. Top. Quantum Electron. 27, 7500521 (2020).

    Google Scholar 

  124. 124.

    Cao, H. et al. Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber. Optica 7, 232–237 (2020).

    ADS  Google Scholar 

  125. 125.

    Cozzolino, D. et al. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication. Phys. Rev. Appl. 11, 064058 (2019).

    ADS  Google Scholar 

  126. 126.

    Liu, J. et al. Multidimensional entanglement transport through single-mode fiber. Sci. Adv. 6, 0837 (2020).

    ADS  Google Scholar 

  127. 127.

    Abramochkin, E. & Volostnikov, V. Generalized Gaussian beams. J. Opt. A 6, S157–S161 (2004).

    ADS  Google Scholar 

  128. 128.

    Danakas, S. & Aravind, P. K. Analogies between two optical systems (photon beam splitters and laser beams) and two quantum systems (the two-dimensional oscillator and the two-dimensional hydrogen atom). Phys. Rev. A 45, 1973–1977 (1992).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Karimi, Y. Shen, A. Dorrah and Q. Zhan for providing customized graphics. We are grateful to M. Alonso for discussions on the operator interpretation of aberrations in cavities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew Forbes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Lorenzo Marrucci, Halina Rubinsztein-Dunlop and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Forbes, A., de Oliveira, M. & Dennis, M.R. Structured light. Nat. Photonics 15, 253–262 (2021). https://doi.org/10.1038/s41566-021-00780-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing