Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser

Abstract

A coherent, compact and robust light source with coverage from the ultraviolet to the infrared is desirable for heterodyne super-resolution imaging1, broadband infrared microscopy2, protein structure determination3 and standoff trace-gas detection4. To address these demanding problems, frequency combs5 combine absolute frequency accuracy with sub-femtosecond timing and waveform control to enable high-resolution, high-speed and broadband spectroscopy6,7,8,9. Here we demonstrate a scalable source of near-single-cycle pulses from robust and low-noise erbium fibre (Er:fibre) technology. With a peak power of 0.56 MW we generate a comb spanning six octaves, from the ultraviolet (350 nm) to the mid-infrared (22,500 nm), achieving a resolving power of 1010 across 0.86 PHz of bandwidth. Second-order nonlinearities in LiNbO3, GaSe and CdSiP2 provide phase-stable infrared ultrashort pulses with simultaneous brightness exceeding a synchrotron10, while cascaded nonlinearities in LiNbO3 yield four octaves simultaneously (0.350–5.6 μm). We anticipate that these advances will be enabling for basic and applied spectroscopy, microscopy and phase-sensitive nonlinear optics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Generation and applications of a six-octave frequency comb.
Fig. 2: Data and simulations demonstrating scalable near-single-cycle pulse generation.
Fig. 3: Six octaves of frequency comb coverage.
Fig. 4: MIR few-cycle pulses and frequency combs.

Data availability

The data supporting the findings of this study are available from D.M.B.L. upon reasonable request.

Code availability

Nonlinear Schrödinger equation code is available from citations in the Supplementary Information as well as from D.M.B.L. upon reasonable request.

References

  1. 1.

    Yang, F., Tashchilina, A., Moiseev, E. S., Simon, C. & Lvovsky, A. I. Far-field linear optical superresolution via heterodyne detection in a higher-order local oscillator mode. Optica 3, 1148–1152 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    Wetzel, D. L. & LeVine, S. M. Imaging molecular chemistry with infrared microscopy. Science 285, 1224–1225 (1999).

    Article  Google Scholar 

  3. 3.

    Williams, R. W. & Dunker, A. K. Determination of the secondary structure of proteins from the amide I band of the laser Raman spectrum. J. Mol. Biol. 152, 783–813 (1981).

    Article  Google Scholar 

  4. 4.

    Rieker, G. B. et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 1, 290–298 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Google Scholar 

  6. 6.

    Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414–426 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Kowligy, A. S. et al. Infrared electric field sampled frequency comb spectroscopy. Sci. Adv. 5, eaaw8794 (2019).

    ADS  Article  Google Scholar 

  8. 8.

    Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Bjork, B. J. et al. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444–448 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Bosch, R. A. Computed flux and brightness of infrared edge and synchrotron radiation. Nucl. Instrum. Methods Phys. Res. A 454, 497–505 (2000).

    ADS  Article  Google Scholar 

  11. 11.

    Hollas, J. M. Modern Spectroscopy 4th edn (Wiley, 2004).

  12. 12.

    Ramasesha, K., De Marco, L., Mandal, A. & Tokmakoff, A. Water vibrations have strongly mixed intra- and intermolecular character. Nat. Chem. 5, 935–940 (2013).

    Article  Google Scholar 

  13. 13.

    Ostaszewski, C. J. et al. Effects of coadsorbed water on the heterogeneous photochemistry of nitrates adsorbed on TiO2. J. Phys. Chem. A 122, 6360–6371 (2018).

    Article  Google Scholar 

  14. 14.

    Mendelsohn, R., Flach, C. R. & Moore, D. J. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim. Biophys. Acta Biomembr. 1758, 923–933 (2006).

    Article  Google Scholar 

  15. 15.

    Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    ADS  Article  Google Scholar 

  16. 16.

    Vasilyev, S. et al. Multi-octave visible to long-wave IR femtosecond continuum generated in Cr:ZnS-GaSe tandem. Opt. Express 27, 16405–16412 (2019).

    ADS  Article  Google Scholar 

  17. 17.

    Hugi, A., Villares, G., Blaser, S., Liu, H. C. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Steinle, T., Mörz, F., Steinmann, A. & Giessen, H. Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20 μm. Opt. Lett. 41, 4863–4866 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Maidment, L., Schunemann, P. G. & Reid, D. T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator. Opt. Lett. 41, 4261–4264 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Gambetta, A. et al. Milliwatt-level frequency combs in the 8–14 μm range via difference frequency generation from an Er:fiber oscillator. Opt. Lett. 38, 1155–1157 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    Soboń, G., Martynkien, T., Mergo, P., Rutkowski, L. & Foltynowicz, A. High-power frequency comb source tunable from 2.7 to 4.2 μm based on difference frequency generation pumped by an Yb-doped fiber laser. Opt. Lett. 42, 1748–1751 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Smolski, V. et al. Half-Watt average power femtosecond source spanning 3–8 μm based on subharmonic generation in GaAs. Appl. Phys. B 124, 101 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    ADS  Article  Google Scholar 

  24. 24.

    Nakamura, T. et al. Coherent optical clock down-conversion for microwave frequencies with 10−18 instability. Science 368, 889–892 (2020).

    ADS  Article  Google Scholar 

  25. 25.

    Riek, C. et al. Direct sampling of electric-field vacuum fluctuations. Science 350, 420–423 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    Huber, R., Brodschelm, A., Tauser, F. & Leitenstorfer, A. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 76, 3191–3193 (2000).

    ADS  Article  Google Scholar 

  27. 27.

    Timmers, H. et al. Molecular fingerprinting with bright, broadband infrared frequency combs. Optica 5, 727–732 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Pupeza, I. et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nat. Photon. 9, 721–724 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Elu, U. et al. High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier. Optica 4, 1024–1029 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Lind, A. J. et al. Mid-infrared frequency comb generation and spectroscopy with few-cycle pulses and χ(2) nonlinear optics. Phys. Rev. Lett. 124, 133904 (2020).

    ADS  Article  Google Scholar 

  31. 31.

    Elahi, P., Kalaycıoğlu, H., Li, H., Akçaalan, Ö. & Ilday, F. Ö. 175 fs-long pulses from a high-power single-mode Er-doped fiber laser at 1550 nm. Opt. Commun. 403, 381–384 (2017).

    ADS  Article  Google Scholar 

  32. 32.

    Krauss, G. et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat. Photon. 4, 33–36 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    Bechtel, H. A., Johnson, S. C., Khatib, O., Muller, E. A. & Raschke, M. B. Synchrotron infrared nano-spectroscopy and -imaging. Surf. Sci. Rep. 75, 100493 (2020).

    Article  Google Scholar 

  34. 34.

    Riek, C. et al. Subcycle quantum electrodynamics. Nature 541, 376–379 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Chaitanya Kumar, S. et al. High-power femtosecond mid-infrared optical parametric oscillator at 7 μm based on CdSiP2. Opt. Lett. 40, 1398–1401 (2015).

    ADS  Article  Google Scholar 

  36. 36.

    Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    ADS  Article  Google Scholar 

  37. 37.

    Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Article  Google Scholar 

  38. 38.

    Okubo, S., Onae, A., Nakamura, K., Udem, T. & Inaba, H. Offset-free optical frequency comb self-referencing with an f–2f interferometer. Optica 5, 188–192 (2018).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The mention of specific companies, products or tradenames does not constitute an endorsement by the National Institute of Standards and Technology (NIST). We thank T. Schibli for his contributions and P. Schunemann and K. Zawilski at BAE for providing the CSP crystal, as well as I. Coddington, D. Carlson and M. Hummon for their manuscript feedback. D.M.B.L. and A.K. acknowledge award 70NANB18H006 from NIST. This research was supported by the Defense Advanced Research Projects Agency SCOUT Program, the Air Force Office of Scientific Research (FA9550-16-1-0016) and NIST.

Author information

Affiliations

Authors

Contributions

H.T., A.K., A.J.L., D.M.B.L. and S.A.D. developed the concept. D.M.B.L., H.T., S.X., A.K. and A.J.L. built and performed the experiments. D.M.B.L. and H.T. analysed the data. D.M.B.L., H.T. and S.A.D. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Daniel M. B. Lesko or Scott A. Diddams.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lesko, D.M.B., Timmers, H., Xing, S. et al. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser. Nat. Photonics 15, 281–286 (2021). https://doi.org/10.1038/s41566-021-00778-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing