Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Realization of superabsorption by time reversal of superradiance


Emission and absorption of light lie at the heart of light–matter interaction1. Although emission and absorption rates are regarded as intrinsic properties of atoms and molecules, various ways to modify these rates have been sought in applications such as quantum information processing2, metrology3 and light-energy harvesting4. One promising approach is to utilize collective behaviour of emitters in the same way as in superradiance5. Although superradiance has been observed in diverse systems3,6,7,8,9,10, its conceptual counterpart in absorption has never been realized11 until now. Here we demonstrate enhanced cooperative absorption—superabsorption—by implementing a time-reversal process of superradiance. The observed superabsorption rate is much higher than that of ordinary absorption, with the number of absorbed photons scaling with the square of the number of atoms, exhibiting the cooperative nature of superabsorption. The present superabsorption—which performs beyond the limitations of conventional absorption—can facilitate weak-signal sensing1, light-energy harvesting11 and light–matter quantum interfaces2.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental scheme and state preparation with a nanohole array.
Fig. 2: Time-dependent intracavity photon numbers by superradiance, superabsorption and ordinary absorption.
Fig. 3: Comparison of superabsorption and ordinary absorption.
Fig. 4: Quadratic dependence of superabsorption on atom number.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

Code availability

All data are obtained from the experiments or from analytic formulae discussed in the manuscript. No special computer codes were used to generate the results reported in this paper.


  1. 1.

    Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391–400 (2010).

    Google Scholar 

  2. 2.

    Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    Norcia, M. A., Winchester, M. N., Cline, J. R. & Thompson, J. K. Superradiance on the millihertz linewidth strontium clock transition. Sci. Adv. 2, e1601231 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Olaya-Castro, A., Lee, C. F., Olsen, F. F. & Johnson, N. F. Efficiency of energy transfer in a light-harvesting system under quantum coherence. Phys. Rev. B 78, 085115 (2008).

    ADS  Article  Google Scholar 

  5. 5.

    Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    ADS  Article  Google Scholar 

  6. 6.

    Skribanowitz, N., Herman, I., MacGillivray, J. & Feld, M. Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309 (1973).

    ADS  Article  Google Scholar 

  7. 7.

    Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    ADS  Article  Google Scholar 

  8. 8.

    Casabone, B. et al. Enhanced quantum interface with collective ion-cavity coupling. Phys. Rev. Lett. 114, 023602 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    Mlynek, J., Abdumalikov, A., Eichler, C. & Wallraff, A. Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate. Nat. Commun. 5, 5186 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Kim, J., Yang, D., Oh, S.-h & An, K. Coherent single-atom superradiance. Science 359, 662–666 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Higgins, K. et al. Superabsorption of light via quantum engineering. Nat. Commun. 5, 4705 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Inouye, S. et al. Superradiant Rayleigh scattering from a Bose–Einstein condensate. Science 285, 571–574 (1999).

    Article  Google Scholar 

  13. 13.

    Reimann, R. et al. Cavity-modified collective Rayleigh scattering of two atoms. Phys. Rev. Lett. 114, 023601 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    Angerer, A. et al. Superradiant emission from colour centres in diamond. Nat. Phys. 14, 1168 (2018).

    Article  Google Scholar 

  15. 15.

    Neuzner, A., Körber, M., Morin, O., Ritter, S. & Rempe, G. Interference and dynamics of light from a distance-controlled atom pair in an optical cavity. Nat. Photon. 10, 303–306 (2016).

    Article  Google Scholar 

  16. 16.

    Tighineanu, P. et al. Single-photon superradiance from a quantum dot. Phys. Rev. Lett. 116, 163604 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Roof, S., Kemp, K., Havey, M. & Sokolov, I. Observation of single-photon superradiance and the cooperative Lamb shift in an extended sample of cold atoms. Phys. Rev. Lett. 117, 073003 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Scully, M. O. & Svidzinsky, A. A. The super of superradiance. Science 325, 1510–1511 (2009).

    Article  Google Scholar 

  19. 19.

    Kuzmich, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003).

    Article  Google Scholar 

  20. 20.

    Romero, E., Novoderezhkin, V. I. & van Grondelle, R. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543, 355–365 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Celardo, G. L., Borgonovi, F., Merkli, M., Tsifrinovich, V. I. & Berman, G. P. Superradiance transition in photosynthetic light-harvesting complexes. J. Phys. Chem. C 116, 22105–22111 (2012).

    Article  Google Scholar 

  22. 22.

    Kaluzny, Y., Goy, P., Gross, M., Raimond, J. M. & Haroche, S. Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: the ringing regime of superradiance. Phys. Rev. Lett. 51, 1175 (1983).

    ADS  Article  Google Scholar 

  23. 23.

    Rose, B. C. et al. Coherent Rabi dynamics of a superradiant spin ensemble in a microwave cavity coherent Rabi dynamics of a superradiant spin ensemble in a microwave cavity. Phys. Rev. X 7, 031002 (2017).

    Google Scholar 

  24. 24.

    Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

    ADS  Article  Google Scholar 

  25. 25.

    Wenner, J. et al. Catching time-reversed microwave coherent state photons with 99.4% absorption efficiency. Phys. Rev. Lett. 112, 210501 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Lee, M. et al. Three-dimensional imaging of cavity vacuum with single atoms localized by a nanohole array. Nat. Commun. 5, 3441 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Reiserer, A., Ritter, S. & Rempe, G. Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013).

    ADS  Article  Google Scholar 

  28. 28.

    Fiedler, S. E., Hese, A. & Ruth, A. A. Incoherent broad-band cavity-enhanced absorption spectroscopy. Chem. Phys. Lett. 371, 284–294 (2003).

    ADS  Article  Google Scholar 

  29. 29.

    Julsgaard, B., Sherson, J., Cirac, J. I., Fiurášek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).

    Article  Google Scholar 

  30. 30.

    Haroche, S., Brune, M. & Raimond, J.-M. Measuring the photon number parity in a cavity: from light quantum jumps to the tomography of non-classical field states. J. Mod. Opt. 54, 2101–2114 (2007).

    ADS  Article  Google Scholar 

Download references


This work was supported by Samsung Science and Technology Foundation (project no. SSTF-BA1502-05), National Research Foundation (grant no. 2020R1A2C3009299) and the Ministry of Science and ICT of Korea under ITRC programme (grant no. IITP-2019-2018-0-01402).

Author information




D.Y. and K.A. conceived the experiment. D.Y. performed experiments with help from S.O., J.H. and G.S. D.Y. analysed the data and carried out theoretical investigations with help from J.U.K. K.A. supervised overall experimental and theoretical works. D.Y. and K.A. wrote the manuscript. All authors participated in discussions.

Corresponding author

Correspondence to Kyungwon An.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Erik Gauger, Stefan Rotter and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–12 and Figs. 1–6.

Source data

Source Data Fig. 1

Source data for Fig. 1 in the main text.

Source Data Fig. 2

Source data for Fig. 2 in the main text.

Source Data Fig. 3

Source data for Fig. 3 in the main text.

Source Data Fig. 4

Source data for Fig. 4 in the main text.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Oh, Sh., Han, J. et al. Realization of superabsorption by time reversal of superradiance. Nat. Photonics 15, 272–276 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing