Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals

Abstract

Scintillators, materials that produce light pulses upon interaction with ionizing radiation, are widely employed in radiation detectors. In advanced medical-imaging technologies, fast scintillators enabling a time resolution of tens of picoseconds are required to achieve high-resolution imaging at the millimetre length scale. Here we demonstrate that composite materials based on fluorescent metal–organic framework (MOF) nanocrystals can work as fast scintillators. We present a prototype scintillator fabricated by embedding MOF nanocrystals in a polymer. The MOF comprises zirconium oxo-hydroxy clusters, high-Z linking nodes interacting with the ionizing radiation, arranged in an orderly fashion at a nanometric distance from 9,10-diphenylanthracene ligand emitters. Their incorporation in the framework enables fast sensitization of the ligand fluorescence, thus avoiding issues typically arising from the intimate mixing of complementary elements. This proof-of-concept prototype device shows an ultrafast scintillation rise time of ~50 ps, thus supporting the development of new scintillators based on engineered fluorescent MOF nanocrystals.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Composite plastic scintillator based on fluorescent MOF nanocrystals.
Fig. 2: Optical and photoluminescence (PL) properties of MOF nanocrystals and nanocomposite scintillators.
Fig. 3: Steady-state RL and scintillation of MOF-based nanocomposites.
Fig. 4: Scintillation properties of MOF-based nanocomposite.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Dujardin, C. et al. Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 65, 1977–1997 (2018).

    ADS  Google Scholar 

  2. Lecoq, P. Development of new scintillators for medical applications. Nucl. Instrum. Methods Phys. Res. A 809, 130–139 (2016).

    ADS  Google Scholar 

  3. Conti, M. & Bendriem, B. The new opportunities for high time resolution clinical TOF PET. Clin. Transl. Imaging 7, 139–147 (2019).

    Google Scholar 

  4. Conti, M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur. J. Nucl. Med. Mol. Imaging 38, 1147–1157 (2011).

    Google Scholar 

  5. Conti, M. State of the art and challenges of time-of-flight PET. Phys. Med. 25, 1–11 (2009).

    Google Scholar 

  6. Surti, S. et al. Impact of improved PET spatial and timing resolution on lesion detectability in oncology. J. Nucl. Med. 60, 459 (2019).

    Google Scholar 

  7. Schaart, D. R. et al. LaBr3:Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time. Phys. Med. Biol. 55, N179–N189 (2010).

    ADS  Google Scholar 

  8. Jones, T. & Townsend, D. History and future technical innovation in positron emission tomography. J. Med. Imaging (Bellingham) 4, 011013 (2017).

    Google Scholar 

  9. Brunner, S. E., Gruber, L., Marton, J., Suzuki, K. & Hirtl, A. Studies on the Cherenkov effect for improved time resolution of TOF-PET. IEEE Trans. Nucl. Sci. 61, 443–447 (2014).

    ADS  Google Scholar 

  10. Turtos, R. M. et al. On the use of CdSe scintillating nanoplatelets as time taggers for high-energy gamma detection. npj 2D Mater. Appl. 3, 37 (2019).

    Google Scholar 

  11. Turtos, R. M., Gundacker, S., Auffray, E. & Lecoq, P. Towards a metamaterial approach for fast timing in PET: experimental proof-of-concept. Phys. Med. Biol. 64, 185018 (2019).

    Google Scholar 

  12. Hajagos, T. J., Liu, C., Cherepy, N. J. & Pei, Q. High-Z sensitized plastic scintillators: a review. Adv. Mater. 30, 1706956 (2018).

    Google Scholar 

  13. Gundacker, S., Auffray, E., Pauwels, K. & Lecoq, P. Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET. Phys. Med. Biol. 61, 2802–2837 (2016).

    Google Scholar 

  14. Doty, F. P., Bauer, C. A., Skulan, A. J., Grant, P. G. & Allendorf, M. D. Scintillating metal-organic frameworks: a new class of radiation detection materials. Adv. Mater. 21, 95–101 (2009).

    Google Scholar 

  15. Kitagawa, S., Kitaura, R. & Noro, S.-I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Google Scholar 

  16. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    ADS  Google Scholar 

  17. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Google Scholar 

  18. Cui, Y., Yue, Y., Qian, G. & Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 112, 1126–1162 (2012).

    Google Scholar 

  19. Lustig, W. P. et al. Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46, 3242–3285 (2017).

    Google Scholar 

  20. Wang, T. C. et al. Get the light out: nanoscaling MOFs for luminescence sensing and optical applications. Chem. Commun. 55, 4647–4650 (2019).

    Google Scholar 

  21. Wang, C. et al. Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal–organic frameworks for highly efficient X-ray scintillation. J. Am. Chem. Soc. 136, 6171–6174 (2014).

    Google Scholar 

  22. Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).

    Google Scholar 

  23. Lu, J. et al. Efficient X-ray scintillating lead(II)-based MOFs derived from rigid luminescent naphthalene motifs. Dalton Trans. 48, 1722–1731 (2019).

    Google Scholar 

  24. Mezenov, Y. A., Krasilin, A. A., Dzyuba, V. P., Nominé, A. & Milichko, V. A. Metal–organic frameworks in modern physics: highlights and perspectives. Adv. Sci. 6, 1900506 (2019).

    Google Scholar 

  25. Abednatanzi, S. et al. Mixed-metal metal–organic frameworks. Chem. Soc. Rev. 48, 2535–2565 (2019).

    Google Scholar 

  26. Lan, G. et al. Nanoscale metal–organic framework hierarchically combines high-Z components for multifarious radio-enhancement. J. Am. Chem. Soc. 141, 6859–6863 (2019).

    Google Scholar 

  27. Paul, L. et al. Roadmap toward the 10 ps time-of-flight PET challenge. Phys. Med. Biol. 65, 21RM01 (2020).

    Google Scholar 

  28. Hiyama, F. et al. X-ray detection capabilities of plastic scintillators incorporated with hafnium oxide nanoparticles surface-modified with phenyl propionic acid. Jpn J. Appl. Phys. 57, 012601 (2017).

    ADS  Google Scholar 

  29. Liu, C. et al. Transparent ultra-high-loading quantum dot/polymer nanocomposite monolith for gamma scintillation. ACS Nano 11, 6422–6430 (2017).

    Google Scholar 

  30. Berlman, I. Handbook of Florescence Spectra of Aromatic Molecules (Academic Press, 1971).

    Google Scholar 

  31. Emeline, A. et al. Spectroscopic and photoluminescence studies of a wide band gap insulating material: powdered and colloidal ZrO2 sols. Langmuir 14, 5011–5022 (1998).

    Google Scholar 

  32. Villa, I. et al. Size-dependent luminescence in HfO2 nanocrystals: toward white emission from intrinsic surface defects. Chem. Mater. 28, 3245–3253 (2016).

    Google Scholar 

  33. Yuan, S., Qin, J.-S., Lollar, C. T. & Zhou, H.-C. Stable metal–organic frameworks with group 4 metals: current status and trends. ACS Cent. Sci. 4, 440–450 (2018).

    Google Scholar 

  34. Schaate, A. et al. Modulated synthesis of Zr-based metal–organic frameworks: from nano to single crystals. Chem. Eur. J. 17, 6643–6651 (2011).

    Google Scholar 

  35. Montalti, M., Credi, A., Prodi, L. & Gandolfi, M. T. Handbook of Photochemistry (CRC Press, 2006).

    Google Scholar 

  36. Monguzzi, A. et al. Highly fluorescent metal–organic-framework nanocomposites for photonic applications. Nano Lett. 18, 528–534 (2018).

    ADS  Google Scholar 

  37. Aubret, A., Pillonnet, A., Houel, J., Dujardin, C. & Kulzer, F. CdSe/ZnS quantum dots as sensors for the local refractive index. Nanoscale 8, 2317–2325 (2016).

    ADS  Google Scholar 

  38. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers (Oxford Univ. Press, 1999).

    Google Scholar 

  39. Bosq, N., Guigo, N., Persello, J. & Sbirrazzuoli, N. Melt and glass crystallization of PDMS and PDMS silica nanocomposites. Phys. Chem. Chem. Phys. 16, 7830–7840 (2014).

    Google Scholar 

  40. Lerche, R. A. & Phillon, D. W. Rise time of BC-422 plastic scintillator < 20 ps. In Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference Vol. 1, 167–170 (IEEE, 1991).

  41. Dell’Orto, E., Fasoli, M., Ren, G. & Vedda, A. Defect-driven radioluminescence sensitization in scintillators: the case of Lu2Si2O7:Pr. J. Phys. Chem. C 117, 20201–20208 (2013).

    Google Scholar 

  42. Cowen, A. R., Davies, A. G. & Sivananthan, M. U. The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography. Clin. Radiol. 63, 1073–1085 (2008).

    Google Scholar 

  43. Hamada, M. M., Rela, P. R., da Costa, F. E. & de Mesquita, C. H. Radiation damage studies on the optical and mechanical properties of plastic scintillators. Nucl. Instrum. Methods Phys. Res. A 422, 148–154 (1999).

    ADS  Google Scholar 

  44. García-Cortés, I. et al. In-situ evaluation of radiation induced optical degradation of candidate scintillator materials for ITER’s gamma and neutron detectors. Fusion Eng. Des. 136, 493–497 (2018).

    Google Scholar 

  45. Davisson, C. M. & Evans, R. D. Gamma-ray absorption coefficients. Rev. Mod. Phys. 24, 79–107 (1952).

    ADS  Google Scholar 

  46. Cates, J. W. & Levin, C. S. Evaluation of a clinical TOF-PET detector design that achieves ≤100 ps coincidence time resolution. Phys. Med. Biol. 63, 115011 (2018).

    Google Scholar 

  47. Turtos, R. M., Gundacker, S., Omelkov, S., Auffray, E. & Lecoq, P. Light yield of scintillating nanocrystals under X-ray and electron excitation. J. Lumin. 215, 116613 (2019).

    Google Scholar 

  48. Derenzo, S. E., Weber, M. J., Moses, W. W. & Dujardin, C. Measurements of the intrinsic rise times of common inorganic scintillators. IEEE Trans. Nucl. Sci. 47, 860–864 (2000).

    ADS  Google Scholar 

  49. Derenzo, S. E., Choong, W.-S. & Moses, W. W. Fundamental limits of scintillation detector timing precision. Phys. Med. Biol. 59, 3261–3286 (2014).

    Google Scholar 

  50. Gundacker, S. et al. Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission. Phys. Med. Biol. 65, 025001 (2020).

    Google Scholar 

  51. Turtos, R. M. et al. Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation. J. Instrum. 11, P10015 (2016).

    Google Scholar 

  52. ter Weele, D. N., Schaart, D. R. & Dorenbos, P. Intrinsic scintillation pulse shape measurements by means of picosecond x-ray excitation for fast timing applications. Nucl. Instrum. Methods Phys. Res. A 767, 206–211 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

Financial support from the Italian Ministry of University and Research (MIUR) through grant Dipartimenti di Eccellenza - 2017 ‘Materials for Energy’ is gratefully acknowledged. We acknowledge support from PRIN-20173L7W8K and PRIN-2015CTEBBA-003. We would like to thank I. Supino for her contribution to the synthesis. The work performed at CERN was made in the frame of Crystal Clear Collaboration.

Author information

Authors and Affiliations

Authors

Contributions

J.P., A.P. and A.C. designed and synthesized the MOF nanocrystals and fabricated the composites. J.P., S.B., P.E.S., C.X.B. and A.C. analysed the nanocrystals and composite structural properties. I.V., R.C. and A.V. performed the steady-state radioluminescence studies. C.D., M.S., N.K., S.G. and E.A. performed the scintillation experiments with pulsed X-ray sources. M.S., N.K., S.G. and E.A. performed the light-yield measurements. M.B. and L.G. performed the scintillation measurements with natural radioactive sources. E.C.P., F.M. and A.M. performed and supervised the photoluminescence studies. F.M. and A.M. developed the numerical modelling of the nanocomposite optical properties. A.M. conceived and designed the project.

Corresponding authors

Correspondence to A. Vedda, A. Comotti, L. Gironi or A. Monguzzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Christine Duval and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–49, Tables 1–10, synthetic procedures, experimental methods, data and refs. 1–12.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perego, J., Villa, I., Pedrini, A. et al. Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals. Nat. Photonics 15, 393–400 (2021). https://doi.org/10.1038/s41566-021-00769-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00769-z

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing