Intensity-based holographic imaging via space-domain Kramers–Kronig relations

Abstract

Holography is a powerful tool to record waves without loss of information that has benefited optical, X-ray and electronic imaging applications by quantifying phase delays induced by light–matter interactions. However, holographic imaging is technically demanding in that it generally requires an interferometric setup, a coherent source and long-term stability. Here, we present holographic imaging in which a phase image is obtained directly from a single intensity measurement in oblique illumination. Our approach is based on space-domain Kramers–Kronig relations that transform the spatial variation in intensity to the spatial variation in phase. We demonstrate two-dimensional holographic imaging and three-dimensional refractive index tomography of microscopic objects and biological specimens from intensity images measured with an optical microscope and illumination control. The proposed method does not require iterative processes nor strict constraints and opens up a new approach to non-interferometric holographic imaging in various spectral regimes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of the proposed method.
Fig. 2: Experimental demonstrations with two-dimensional samples.
Fig. 3: Optical diffraction tomography with a 5 μm polystyrene bead.
Fig. 4: RI tomogram of a trinucleated A549 cell.
Fig. 5: Time-lapse tomographic imaging of an A549 cell.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    ADS  Article  Google Scholar 

  2. 2.

    Yetisen, A. K., Naydenova, I., Vasconcellos, F. D., Blyth, J. & Lower, C. R. Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications. Chem. Rev. 114, 10654–10696 (2014).

    Article  Google Scholar 

  3. 3.

    Matoba, O., Nomura, T., Perez-Cabre, E., Millan, M. S. & Javidi, B. Optical techniques for information security. Proc. IEEE 97, 1128–1148 (2009).

    Article  Google Scholar 

  4. 4.

    Coufal, H. J, Psaltis, D. & Sincerbox, G. T. Holographic Data Storage (Springer, 2000).

  5. 5.

    Cui, M. & Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express 18, 3444–3455 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    Park, J. H., Park, J., Lee, K. & Park, Y. Disordered optics: exploiting multiple light scattering and wavefront shaping for nonconventional optical elements. Adv. Mater. 32, 1903457 (2019).

    Article  Google Scholar 

  7. 7.

    Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Yaraş, F., Kang, H. & Onural, L. State of the art in holographic displays: a survey. J. Disp. Technol. 6, 443–454 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    Yu, H., Lee, K., Park, J. & Park, Y. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nat. Photonics 11, 186–192 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Schnars, U., Falldorf, C., Watson, J. & Jüptner, W. Digital Holography and Wavefront Sensing (Springer-Verlag, 2016). .

  11. 11.

    Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Momose, A. Recent advances in X-ray phase imaging. Jpn J. Appl. Phys. 44, 6355–6367 (2005).

    ADS  Article  Google Scholar 

  13. 13.

    Kemper, B. & von Bally, G. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt. 47, A52–A61 (2008).

    Article  Google Scholar 

  14. 14.

    Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 8, 271–280 (2009).

    ADS  Article  Google Scholar 

  15. 15.

    Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

    ADS  Article  Google Scholar 

  16. 16.

    Tegze, M. & Faigel, G. X-ray holography with atomic resolution. Nature 380, 49–51 (1996).

    ADS  Article  Google Scholar 

  17. 17.

    Teague, M. R. Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am. 73, 1434–1441 (1983).

    ADS  Article  Google Scholar 

  18. 18.

    Waller, L., Tian, L. & Barbastathis, G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Opt. Express 18, 12552–12561 (2010).

    ADS  Article  Google Scholar 

  19. 19.

    Rodenburg, J. M. & Faulkner, H. M. L. A phase retrieval algorithm for shifting illumination. Appl. Phys. Lett. 85, 4795–4797 (2004).

    ADS  Article  Google Scholar 

  20. 20.

    Mehta, S. B. & Sheppard, C. J. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast. Opt. Lett. 34, 1924–1926 (2009).

    ADS  Article  Google Scholar 

  21. 21.

    Zheng, G., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 7, 739–745 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Tian, L. & Waller, L. Quantitative differential phase contrast imaging in an LED array microscope. Opt. Express 23, 11394–11403 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Zhang, F. C., Pedrini, G. & Osten, W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation. Phys. Rev. A 75, 043805 (2007).

    ADS  Article  Google Scholar 

  24. 24.

    Bon, P., Maucort, G., Wattellier, B. & Monneret, S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express 17, 13080–13094 (2009).

    ADS  Article  Google Scholar 

  25. 25.

    Zhang, F. C. & Rodenburg, J. M. Phase retrieval based on wave-front relay and modulation. Phys. Rev. B 82, 121104 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Horisaki, R., Ogura, Y., Aino, M. & Tanida, J. Single-shot phase imaging with a coded aperture. Opt. Lett. 39, 6466–6469 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Lee, K. & Park, Y. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor. Nat. Commun. 7, 13359 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Baek, Y., Lee, K. & Park, Y. High-resolution holographic microscopy exploiting speckle-correlation scattering matrix. Phys. Rev. Appl. 10, 024053 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Kronig, R. D. L. On the theory of dispersion of X-rays. J. Opt. Soc. Am. 12, 547–557 (1926).

    ADS  Article  Google Scholar 

  30. 30.

    Kramers, H. A. La diffusion de la lumière par les atomes. Atti Cong. Intern. Fis. 2, 545–557 (1927).

    Google Scholar 

  31. 31.

    Baek, Y., Lee, K., Shin, S. & Park, Y. Kramers–Kronig holographic imaging for high-space-bandwidth product. Optica 6, 45–51 (2019).

    ADS  Article  Google Scholar 

  32. 32.

    Hoenders, B. On the solution of the phase retrieval problem. J. Math. Phys. 16, 1719–1725 (1975).

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    Misell, D. & Greenaway, A. An application of the Hilbert transform in electron microscopy: II. Non-iterative solution in bright-field microscopy and the dark-field problem. J. Phys. D Appl. Phys. 7, 1660 (1974).

    ADS  Article  Google Scholar 

  34. 34.

    Toll, J. S. Causality and the dispersion relation: logical foundations. Phys. Rev. 104, 1760 (1956).

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    Alexandrov, S. A., Hillman, T. R., Gutzler, T. & Sampson, D. D. Synthetic aperture fourier holographic optical microscopy. Phys. Rev. Lett. 97, 168102 (2006).

    ADS  Article  Google Scholar 

  36. 36.

    Gao, P., Pedrini, G. & Osten, W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy. Opt. Lett. 38, 1328–1330 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    Shin, S., Kim, K., Lee, K., Lee, S. & Park, Y. Effects of spatiotemporal coherence on interferometric microscopy. Opt. Express 25, 8085–8097 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1, 153–156 (1969).

    ADS  Article  Google Scholar 

  39. 39.

    Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 1999). .

  40. 40.

    Sun, J., Chen, Q., Zhang, J., Fan, Y. & Zuo, C. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography. Opt. Lett. 43, 3365–3368 (2018).

    ADS  Article  Google Scholar 

  41. 41.

    Kim, K., Kim, K. S., Park, H., Ye, J. C. & Park, Y. Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography. Opt. Express 21, 32269–32278 (2013).

    ADS  Article  Google Scholar 

  42. 42.

    Ling, R., Tahir, W., Lin, H. Y., Lee, H. & Tian, L. High-throughput intensity diffraction tomography with a computational microscope. Biomed. Opt. Express 9, 2130–2141 (2018).

    Article  Google Scholar 

  43. 43.

    Matlock, A. & Tian, L. High-throughput, volumetric quantitative phase imaging with multiplexed intensity diffraction tomography. Biomed. Opt. Express 10, 6432–6448 (2019).

    Article  Google Scholar 

  44. 44.

    Chen, B. & Stamnes, J. J. Validity of diffraction tomography based on the first Born and the first Rytov approximations. Appl. Opt. 37, 2996–3006 (1998).

    ADS  Article  Google Scholar 

  45. 45.

    Lim, J. et al. Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography. Opt. Express 23, 16933–16948 (2015).

    ADS  Article  Google Scholar 

  46. 46.

    Lee, M., Shin, S. & Park, Y. Reconstructions of refractive index tomograms via a discrete algebraic reconstruction technique. Opt. Express 25, 27415–27430 (2017).

    ADS  Article  Google Scholar 

  47. 47.

    Sung, Y. & Dasari, R. R. Deterministic regularization of three-dimensional optical diffraction tomography. J. Opt. Soc. Am. A 28, 1554–1561 (2011).

    ADS  Article  Google Scholar 

  48. 48.

    Tian, L. & Waller, L. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica 2, 104–111 (2015).

    ADS  Article  Google Scholar 

  49. 49.

    Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517–522 (2015).

    ADS  Article  Google Scholar 

  50. 50.

    Chowdhury, S. et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica 6, 1211–1219 (2019).

    ADS  Article  Google Scholar 

  51. 51.

    Lim, J., Ayoub, A. B., Antoine, E. E. & Psaltis, D. High-fidelity optical diffraction tomography of multiple scattering samples. Light Sci. Appl. 8, 82 (2019).

    ADS  Article  Google Scholar 

  52. 52.

    Fan, S., Smith-Dryden, S., Li, G. & Saleh, B. Reconstructing complex refractive-index of multiply-scattering media by use of iterative optical diffraction tomography. Opt. Express 28, 6846–6858 (2020).

    ADS  Article  Google Scholar 

  53. 53.

    Zhou, K. C. & Horstmeyer, R. Diffraction tomography with a deep image prior. Opt. Express 28, 12872–12896 (2020).

    ADS  Article  Google Scholar 

  54. 54.

    Tian, L. et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica 2, 904–911 (2015).

    ADS  Article  Google Scholar 

  55. 55.

    Lanni, F. & Baxter, G. J. Sampling theorem for square-pixel image data. In Proc SPIE 1660, Biomedical Image Processing and Three-Dimensional Microscopy 140–147 (1992).

Download references

Acknowledgements

This work is supported by KAIST Up programme, the BK21+ programme, Tomocube, Inc. and the National Research Foundation of Korea (2017M3C1A3013923, 2015R1A3A2066550, 2018K000396).

Author information

Affiliations

Authors

Contributions

Y.B. and Y.P. conceived the project. Y.B. developed the mathematical framework and conducted the experiment. Y.B. and Y.P. wrote the manuscript. Y.P. provided supervision.

Corresponding author

Correspondence to YongKeun Park.

Ethics declarations

Competing interests

Y.P. has financial interests in Tomocube, Inc., a company that commercializes optical diffraction tomography and quantitative phase imaging instruments and is one of the sponsors of the work.

Additional information

Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and discussion.

Supplementary Video 1

Time-lapse maximum intensity projection images of the RI tomogram of an A549 cell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baek, Y., Park, Y. Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nat. Photonics (2021). https://doi.org/10.1038/s41566-021-00760-8

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing