Correlating photons using the collective nonlinear response of atoms weakly coupled to an optical mode


Photons in a nonlinear medium can repel or attract each other, resulting in strongly correlated quantum many-body states1,2. Typically, such correlated states of light arise from the extreme nonlinearity granted by quantum emitters that are strongly coupled to a photonic mode2,3. However, unavoidable dissipation (such as photon loss) blurs nonlinear quantum effects when such approaches are used. Here, we generate strongly correlated photon states using only weak coupling and taking advantage of dissipation. An ensemble of non-interacting waveguide-coupled atoms induces correlations between simultaneously arriving photons through collectively enhanced nonlinear interactions. These correlated photons experience less dissipation than the uncorrelated ones. Depending on the number of atoms, we experimentally observe strong photon bunching or antibunching of the transmitted light. This realization of a collectively enhanced nonlinearity may turn out to be transformational for quantum information science and opens new avenues for generating non-classical light, covering frequencies from the microwave to the X-ray regime.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematics of the experimental process.
Fig. 2: Measured second-order correlation functions for four different mean atom numbers.
Fig. 3: Correlations at zero time delay versus the number of trapped atoms.

Data availability

The data supporting the findings of this study are available from J.V. ( or A.R. on reasonable request.

Code availability

The code used for modelling the data is available from S.M. on reasonable request.


  1. 1.

    Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics — photon by photon. Nat. Photon. 8, 685–694 (2014).

    ADS  Article  Google Scholar 

  2. 2.

    Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Colloquium: quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    ADS  Article  Google Scholar 

  5. 5.

    Dayan, B. et al. A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008).

    ADS  Article  Google Scholar 

  6. 6.

    Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859–863 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    Reinhard, A. et al. Strongly correlated photons on a chip. Nat. Photon. 6, 93–96 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Volz, J., Scheucher, M., Junge, C. & Rauschenbeutel, A. Nonlinear π phase shift for single fibre-guided photons interacting with a single atom. Nat. Photon. 8, 965–970 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Hamsen, C., Tolazzi, K. N., Wilk, T. & Rempe, G. Two-photon blockade in an atom-driven cavity QED system. Phys. Rev. Lett. 118, 133604 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    Parigi, V. et al. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms. Phys. Rev. Lett. 109, 233602 (2012).

    ADS  Article  Google Scholar 

  13. 13.

    Maxwell, D. et al. Storage and control of optical photons using Rydberg polaritons. Phys. Rev. Lett. 110, 103001 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Baur, S., Tiarks, D., Rempe, G. & Dürr, S. Single-photon switch based on Rydberg blockade. Phys. Rev. Lett. 112, 073901 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Thompson, J. D. et al. Symmetry-protected collisions between strongly interacting photons. Nature 542, 206–209 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Stiesdal, N. et al. Observation of three-body correlations for photons coupled to a Rydberg superatom. Phys. Rev. Lett. 121, 103601 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Tiarks, D., Schmidt-Eberle, S., Stolz, T., Rempe, G. & Dürr, S. A photon–photon quantum gate based on Rydberg interactions. Nat. Phys. 15, 124–126 (2019).

    Article  Google Scholar 

  19. 19.

    Goban, A. et al. Atom-light interactions in photonic crystals. Nat. Commun. 5, 3808 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Javadi, A. et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Coles, R. J. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    Türschmann, P. et al. Coherent nonlinear optics of quantum emitters in nanophotonic waveguides. Nanophotonics 8, 1641–1657 (2019).

    Article  Google Scholar 

  23. 23.

    Mahmoodian, S. et al. Strongly correlated photon transport in waveguide quantum electrodynamics with weakly coupled emitters. Phys. Rev. Lett. 121, 143601 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Vetsch, E. et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010).

    ADS  Article  Google Scholar 

  25. 25.

    Le Kien, F., Liang, J. Q., Hakuta, K. & Balykin, V. I. Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber. Opt. Commun. 242, 445–455 (2004).

    ADS  Article  Google Scholar 

  26. 26.

    Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Legero, T., Wilk, T., Hennrich, M., Rempe, G. & Kuhn, A. Quantum beat of two single photons. Phys. Rev. Lett. 93, 070503 (2004).

    ADS  Article  Google Scholar 

  28. 28.

    Hennrich, M., Kuhn, A. & Rempe, G. Transition from antibunching to bunching in cavity QED. Phys. Rev. Lett. 94, 053604 (2005).

    ADS  Article  Google Scholar 

  29. 29.

    Nayak, K. P., Le Kien, F., Morinaga, M. & Hakuta, K. Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber. Phys. Rev. A 79, 021801(R) (2009).

    ADS  Article  Google Scholar 

  30. 30.

    Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  Article  Google Scholar 

  31. 31.

    Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Le Kien, F., Balykin, V. I. & Hakuta, K. Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber. Phys. Rev. A 70, 063403 (2004).

    ADS  Article  Google Scholar 

  33. 33.

    Goban, A. et al. Demonstration of a state-insensitive, compensated nanofiber trap. Phys. Rev. Lett. 109, 033603 (2012).

    ADS  Article  Google Scholar 

  34. 34.

    Gouraud, B., Maxein, D., Nicolas, A., Morin, O. & Laurat, J. Atom-light interactions in quasi-one-dimensional nanostructures: a Green’s-function perspective. Phys. Rev. Lett 114, 180503 (2015).

    ADS  Article  Google Scholar 

Download references


We acknowledge financial support by the European Commission under the projects ErBeStA (No. 800942) and the ERC grant NanoQuaNt, by the Austrian Science Fund (DK CoQuS Project No. W 1210-N16), by the DFG through CRC 1227 DQ-mat (project A06) and by the Danish National Research Foundation (Center of Excellence Hy-Q).

Author information




K.H., S.M. and A.S.S. made the theory predictions and were responsible for modelling the data. J.H., A.S.P., A.R., S.R., P.S. and J.V. contributed to the design and the setting-up of the experiment. A.S.P. and J.H. performed the experiment. A.S.P. together with S.M. and J.V. was responsible for analysing the data. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Sahand Mahmoodian or Arno Rauschenbeutel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Second-order correlation functions for different atom numbers.

The measured correlation functions are shown in blue and the theoretical predictions (see main text) in orange.

Extended Data Fig. 2 Experimental sequence.

First, a MOT and a optical molasses phase are used to load atoms into the nanofibre-based trap (i). This is followed by a 10 ms ramp of the power of the red-detuned trapping field to increase β (ii) and a second molasses phase to re-cool the atoms (iii). To measure the OD of the ensemble, we then sweep the probe laser frequency across the atomic resonance and measure its transmission (iv). The main part of the experimental sequence consists of 350 repetitions of alternating probe and cooling pulses (v). Afterwards, we again measure the OD to check for atom losses (vi), remove the atoms from the trap (vii), and measure transmission through the bare fibre for calibration (viii).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prasad, A.S., Hinney, J., Mahmoodian, S. et al. Correlating photons using the collective nonlinear response of atoms weakly coupled to an optical mode. Nat. Photonics (2020).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing