Abstract
Optical angular momentum-based photonic technologies demonstrate the key role of the optical spin–orbit interaction that usually refers to linear optical processes in spatially engineered optical materials1. Re-examining the basics of nonlinear optics of homogeneous crystals under circularly polarized light2,3, we report experiments on the enrichment of the spin–orbit angular momentum spectrum of paraxial light. The demonstration is made within the framework of second-harmonic generation using a crystal with three-fold rotational symmetry. Four spin–orbit optical states for the second harmonic field are predicted from a single fundamental state owing to the interplay between linear spin–orbit coupling and nonlinear wave mixing; three of these states are experimentally verified. Besides representing a spin-controlled nonlinear route to orbital angular multiplexing4, modal vortex light sources5,6, high-dimensional parametric processes7 and multi-state optical magnetization8, our findings suggest that the fundamentals of nonlinear optics are worth revisiting through the prism of the spin–orbit interaction of light.
Access options
Subscribe to Journal
Get full journal access for 1 year
$169.00
only $14.08 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.




Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.
References
- 1.
Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).
- 2.
Simon, H. J. & Bloembergen, N. Second-harmonic light generation in crystals with natural optical activity. Phys. Rev. 171, 1104–1114 (1968).
- 3.
Patel, C. K. N. & Van Tran, N. Phase-matched nonlinear interaction between circularly polarized waves. Appl. Phys. Lett. 15, 189–191 (1969).
- 4.
Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).
- 5.
Omatsu, T., Miyamoto, K. & Lee, A. J. Wavelength-versatile optical vortex lasers. J. Opt. 19, 123002 (2017).
- 6.
Sroor, H. et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photon. 14, 498–503 (2020).
- 7.
Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photon. 8, 543–549 (2014).
- 8.
Lin, S. et al. All-optical vectorial control of multistate magnetization through anisotropy-mediated spin-orbit coupling. Nanophotonics 8, 2177–2188 (2019).
- 9.
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).
- 10.
Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019).
- 11.
Volyar, A. V., Fadeeva, T. A. & Egorov, Yu. A. Vector singularities of Gaussian beams in uniaxial crystals: optical vortex generation. Tech. Phys. Lett. 28, 70–77 (2002).
- 12.
Ciattoni, A., Cincotti, G. & Palma, C. Circularly polarized beams and vortex generation in uniaxial media. J. Opt. Soc. Am. A 20, 163–171 (2003).
- 13.
Biener, G., Niv, A., Kleiner, V. & Hasman, E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Opt. Lett. 27, 1875–1877 (2002).
- 14.
Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).
- 15.
Li, G. et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett. 13, 4148–4151 (2013).
- 16.
Karimi, E. et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, e167 (2014).
- 17.
Basistiy, I. V., Bazhenov, V. Y., Soskin, M. S. & Vasnetsov, M. V. Optics of light beams with screw dislocations. Opt. Commun. 103, 422–428 (1993).
- 18.
Dholakia, K., Simpson, N. B., Padgett, M. J. & Allen, L. Second-harmonic generation and the orbital angular momentum of light. Phys. Rev. A 54, R3742–R3745 (1996).
- 19.
Beržanskis, A., Matijošius, A., Piskarskas, A., Smilgevičius, V. & Stabinis, A. Sum-frequency mixing of optical vortices in nonlinear crystals. Opt. Commun. 150, 372–380 (1998).
- 20.
Bloch, N. V. et al. Twisting light by nonlinear photonic crystals. Phys. Rev. Lett. 108, 233902 (2012).
- 21.
Liu, S. et al. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals. Nat. Commun. 10, 3208 (2019).
- 22.
Wei, D. et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nat. Commun. 10, 4193 (2019).
- 23.
Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).
- 24.
Li, G., Zentgraf, T. & Zhang, S. Rotational Doppler effect in nonlinear optics. Nat. Phys. 12, 736–740 (2016).
- 25.
Chen, C., Wu, B., Jiang, A. & You, G. A new-type ultraviolet SHG crystal: β-BaB2O4. Sci. Sin. Ser. B 28, 235–243 (1985).
- 26.
Bekshaev, A. Y., Soskin, M. S. & Vasnetsov, M. V. Transformation of higher-order optical vortices upon focusing by an astigmatic lens. Opt. Commun. 241, 237–247 (2004).
- 27.
Loussert, C. & Brasselet, E. Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media. Opt. Lett. 35, 7–9 (2010).
- 28.
Brasselet, E. et al. Dynamics of optical spin-orbit coupling in uniaxial crystals. Opt. Lett. 34, 1021–1023 (2009).
- 29.
Langford, N. K. et al. Measuring entangled qutrits and their use for quantum bit commitment. Phys. Rev. Lett. 93, 053601 (2004).
- 30.
Bhagavantam, S. & Chandrasekhar, P. Harmonic generation and selection rules in nonlinear optics. Proc. Ind. Acad. Sci. A 76, 13–20 (1972).
- 31.
Belyi, V., Khilo, N., Forbes, A. & Ryzhevich, A. Generation and propagation of high-order Bessel vortices in linear and non-linear crystals. In Proc. SPIE 7430, Laser Beam Shaping X 74300F (SPIE, 2009).
- 32.
Sato, S. & Kozawa, Y. Radially polarized annular beam generated through a second-harmonic-generation process. Opt. Lett. 34, 3166–3168 (2009).
- 33.
Belyi, V., Khilo, N., Kazak, N., Ryzhevich, A. & Forbes, A. Propagation of high-order circularly polarized Bessel beams and vortex generation in uniaxial. Opt. Eng. 50, 059001 (2011).
- 34.
Shao, G.-H., Wu, Z.-J., Chen, J.-H., Xu, F. & Lu, Y.-Q. Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching. Phys. Rev. A 88, 063827 (2013).
- 35.
Chen, S. et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals. Phys. Rev. Lett. 113, 033901 (2014).
- 36.
Konishi, K. et al. Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry. Phys. Rev. Lett. 112, 135502 (2014).
- 37.
Buono, W. T. et al. Polarization-controlled orbital angular momentum switching in nonlinear wave mixing. Opt. Lett. 43, 1439–1442 (2018).
- 38.
Wang, K. et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018).
- 39.
Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).
- 40.
Rego, L. et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364, eaaw9486 (2019).
Acknowledgements
G.L. is financially supported by the National Natural Science Foundation of China (grant numbers 91950114 and 11774145), a Guangdong Provincial Innovation and Entrepreneurship Project (2017ZT07C071) and the Qiu Shi Science & Technologies Foundation.
Author information
Affiliations
Contributions
E.B. and G.L. proposed the idea and designed the experiment. Y.T., K.L., J.D., X.Z. and G.L. conducted the nonlinear optical measurements. E.B., G.L., Y.T. and J.D. wrote the manuscript. All authors participated in the data analysis and discussions. G.L. and E.B. supervised the project.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–21, Tables 1–8 and discussion.
Rights and permissions
About this article
Cite this article
Tang, Y., Li, K., Zhang, X. et al. Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals. Nat. Photonics 14, 658–662 (2020). https://doi.org/10.1038/s41566-020-0691-0
Received:
Accepted:
Published:
Issue Date:
Further reading
-
Knotted polarizations and spin in three-dimensional polychromatic waves
Physical Review Research (2020)