Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vectorized optoelectronic control and metrology in a semiconductor

A Publisher Correction to this article was published on 12 October 2020

This article has been updated

Abstract

The increasingly prominent role of light in information processing makes optoelectronic devices a technology of fundamental importance. Coherent control of currents in semiconductors using synthesized optical waveforms provides a sensitive and robust means to transfer information from light to an electronic circuit. Currents driven by Gaussian laser beams are spatially uniform in direction, offering limited technological utility. Full control over the transverse spatial distribution of currents excited in a material would vastly increase the versatility and impact of optoelectronic devices. Here we simultaneously control the waveform and vectorial arrangement of optical fields, enabling precise manipulation of the spatial distribution of currents in a semiconductor. As a direct application, we drive loop currents, embodying a new ultrafast magnetic field source. Subsequently, we demonstrate a scheme for generating an arbitrary superposition of two orthogonal current arrangements via subcycle adjustment of the optical waveform.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Vectorized coherent control.
Fig. 2: Experimental configuration.
Fig. 3: Measurement of azimuthal currents.
Fig. 4: Measurement of radial currents.
Fig. 5: Two-dimensional control over the local current direction.
Fig. 6: Coherent control of orthogonal current modes.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 12 October 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Shapiro, M. & Brumer, P. Quantum Control of Molecular Processes (John Wiley & Sons, 2012).

  2. Garcia-Ripoll, J. J., Zoller, P. & Cirac, J. I. Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91, 157901 (2003).

    ADS  Google Scholar 

  3. Scharfenberger, B., Munro, W. J. & Nemoto, K. Coherent control of an NV center with one adjacent 13C. New J. Phys. 16, 093043 (2014).

    ADS  Google Scholar 

  4. Wang, J. I.-J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    ADS  Google Scholar 

  5. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Google Scholar 

  6. Boutu, W. et al. Coherent control of attosecond emission from aligned molecules. Nat. Phys. 4, 545–549 (2008).

    Google Scholar 

  7. Haché, A., Sipe, J. E. & van Driel, H. M. Quantum interference control of electrical currents in GaAs. IEEE J. Quantum Electron. 34, 1144–1154 (1998).

    ADS  Google Scholar 

  8. Viteau, M. et al. Optical pumping and vibrational cooling of molecules. Science 321, 232–234 (2008).

    ADS  Google Scholar 

  9. Lien, C.-Y. et al. Broadband optical cooling of molecular rotors from room temperature to the ground state. Nat. Commun. 5, 4783 (2014).

    ADS  Google Scholar 

  10. Dupont, E., Corkum, P. B., Liu, H. C., Buchanan, M. & Wasilewksi, Z. R. Phase-controlled currents in semiconductors. Phys. Rev. Lett. 74, 3596–3599 (1995).

    ADS  Google Scholar 

  11. Stevens, M. J. et al. Optical injection and coherent control of a ballistic charge current in GaAs/AlGaAs quantum wells. J. Appl. Phys. 94, 4999–5004 (2003).

    ADS  Google Scholar 

  12. Atanasov, R., Haché, A., Hughes, J. L. P., van Driel, H. M. & Sipe, J. E. Coherent control of photocurrent injection in bulk semiconductors. Phys. Rev. Lett. 76, 1703–1706 (1996).

    ADS  Google Scholar 

  13. Fraser, J. M., Shkrebtii, A. I., Sipe, J. E. & van Driel, H. M. Quantum interference in electron–hole generation in noncentrosymmetric semiconductors. Phys. Rev. Lett. 83, 4192–4195 (1999).

    ADS  Google Scholar 

  14. Côté, D., Fraser, J. M., DeCamp, M., Bucksbaum, P. H. & van Driel, H. M. THz emission from coherently controlled photocurrents in GaAs. Appl. Phys. Lett. 75, 3959–3961 (1999).

    ADS  Google Scholar 

  15. Fraser, J. M. & van Driel, H. M. Quantum interference control of free-carrier density in GaAs. Phys. Rev. B. 68, 085208 (2003).

    ADS  Google Scholar 

  16. Costa, L., Betz, M., Spasenovic, M., Bristow, A. D. & van Driel, H. M. All-optical injection of ballistic electrical currents in unbiased silicon. Nat. Phys. 3, 632–635 (2007).

    Google Scholar 

  17. Spasenovic, M., Betz, M., Costa, L. & van Driel, H. M. All-optical coherent control of electrical currents in centrosymmetric semiconductors. Phys. Rev. B 77, 085201 (2008).

    ADS  Google Scholar 

  18. Schiffrin, A. et al. Optical-field-induced currents in dielectrics. Nature 493, 70–74 (2013).

    ADS  Google Scholar 

  19. Sederberg, S. et al. Attosecond optoelectronic field measurement in solids. Nat. Commun. 11, 430 (2020).

    ADS  Google Scholar 

  20. Güdde, J., Rohleder, M., Meier, T., Koch, S. W. & Höfer, U. Time-resolved investigation of coherently controlled electric currents at a metal surface. Science 318, 1287–1291 (2007).

    ADS  Google Scholar 

  21. Newson, R. W., Ménard, J. –M., Sames, C., Betz, M. & van Driel, H. M. Coherently controlled ballistic charge currents in single-walled carbon nanotubes and graphite. Nano Lett. 8, 1586–1589 (2008).

    ADS  Google Scholar 

  22. Rybka, T. et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photon. 10, 667–670 (2016).

    ADS  Google Scholar 

  23. Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    ADS  Google Scholar 

  24. Pierce, D. T. & Meier, F. Photoemission of spin-polarized electrons from GaAs. Phys. Rev. B 13, 5484–5500 (1976).

    ADS  Google Scholar 

  25. Pierce, D. T. et al. The GaAs spin polarized electron source. Rev. Sci. Instrum. 51, 478–499 (1980).

    ADS  Google Scholar 

  26. Ivchenko, E. L. & Pikus, G. E. New photogalvanic effect in gyrotropic crystals. JETP Lett. 27, 604–608 (1978).

    ADS  Google Scholar 

  27. Belinicher, V. I. Space-oscillating photocurrent in crystals without symmetry center. Phys. Lett. A 66, 213–214 (1978).

    ADS  Google Scholar 

  28. Asnin, V. M. et al. Observation of a photo-emf that depends on the sign of the circular polarisation of the light. JETP Lett. 28, 74–77 (1978).

    ADS  Google Scholar 

  29. Bhat, R. D. R. & Sipe, J. E. Optically injected spin currents in semiconductors. Phys. Rev. Lett. 85, 5432–5435 (2000).

    ADS  Google Scholar 

  30. Stevens, M. J. et al. Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs. J. Appl. Phys. 91, 4382–4386 (2002).

    ADS  Google Scholar 

  31. Stevens, M. J. et al. Quantum interference control of ballistic pure spin currents in semiconductors. Phys. Rev. Lett. 90, 136603 (2003).

    ADS  Google Scholar 

  32. Hübner, J. et al. Direct observation of optically injected spin-polarized currents in semiconductors. Phys. Rev. Lett. 90, 216601 (2003).

    ADS  Google Scholar 

  33. Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

    ADS  Google Scholar 

  34. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    ADS  Google Scholar 

  35. Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    ADS  Google Scholar 

  36. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated-emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    ADS  Google Scholar 

  37. Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).

    ADS  Google Scholar 

  38. Schmiegelow, C. T. et al. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 7, 12998 (2016).

    ADS  Google Scholar 

  39. Wätzel, J. & Berakdar, J. Centrifugal photovoltaic and photogalvanic effects driven by structured light. Sci. Rep. 6, 21475 (2016).

    ADS  Google Scholar 

  40. Wätzel, J., Granados-Castro, C. M. & Berakdar, J. Magnetoelectric response of quantum structures driven by optical vector beams. Phys. Rev. B 99, 085425 (2019).

    ADS  Google Scholar 

  41. Sederberg, S., Kong, F. & Corkum, P. B. Tesla-scale terahertz magnetic impulses. Phys. Rev. X 10, 011063 (2020).

    Google Scholar 

  42. Corkum, P. B., Burnett, N. H. & Brunel, F. Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 1259–1262 (1989).

    ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Program, the Canada Research Chairs programme, the United States Defense Advanced Research Projects Agency (‘Topological Excitations in Electronics (TEE)’, agreement number D18AC00011) and the United States Army Research Office (award number W911NF-19-1-0211).

Author information

Authors and Affiliations

Authors

Contributions

P.B.C. conceived the idea and supervised the project. S.S. and F.K. fabricated the detector and performed the experiments. S.S. conceived the measurement technique, analysed the data and wrote the manuscript. F.H. fabricated the q plates, supervised by E.K. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Shawn Sederberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Notes 1–13 and refs. 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sederberg, S., Kong, F., Hufnagel, F. et al. Vectorized optoelectronic control and metrology in a semiconductor. Nat. Photonics 14, 680–685 (2020). https://doi.org/10.1038/s41566-020-0690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0690-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing