Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable free-electron X-ray radiation from van der Waals materials

Abstract

Tunable sources of X-ray radiation are widely used for imaging and spectroscopy in fundamental science, medicine and industry. The growing demand for highly tunable, high-brightness laboratory-scale X-ray sources motivates research into new fundamental mechanisms of X-ray generation. Here, we demonstrate the ability of van der Waals materials to serve as a platform for tunable X-ray generation when irradiated by moderately relativistic electrons available, for example, from a transmission electron microscope. The radiation spectrum can be precisely controlled by tuning the acceleration voltage of the incident electrons, as well as by our proposed approach: adjusting the lattice structure of the van der Waals material. We present experimental results for both methods, observing the energy tunability of X-ray radiation from the van der Waals materials WSe2, CrPS4, MnPS3, FePS3, CoPS3 and NiPS3. Our findings demonstrate the concept of material design at the atomic level, using van der Waals heterostructures and other atomic superlattices, for exploring novel phenomena of X-ray physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Demonstration of free-electron radiation from vdW materials.
Fig. 2: Tunability of X-ray radiation from vdW materials.
Fig. 3: Spectral shaping of X-ray radiation via customized superlattices.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The codes that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    ADS  Google Scholar 

  2. Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Google Scholar 

  3. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2016).

    ADS  Google Scholar 

  4. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    ADS  Google Scholar 

  5. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    ADS  Google Scholar 

  6. Hao, J. et al. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010).

    ADS  Google Scholar 

  7. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    ADS  Google Scholar 

  8. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011).

    ADS  Google Scholar 

  9. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    ADS  Google Scholar 

  10. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    ADS  Google Scholar 

  11. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Google Scholar 

  12. Evain, M., Brec, R. & Wbangbo, M. H. Structural and electronic properties of transition metal thiophosphates. J. Solid State Chem. 71, 244–262 (1987).

    ADS  Google Scholar 

  13. Latini, S., Olsen, T. & Thygesen, K. S. Excitons in van der Waals heterostructures: the important role of dielectric screening. Phys. Rev. B 92, 245123 (2015).

    ADS  Google Scholar 

  14. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).

    Google Scholar 

  15. Susner, M. A., Chyasnavichyus, M., McGuire, M. A., Ganesh, P. & Maksymovych, P. Metal thio- and selenophosphates as multifunctional van der Waals layered materials. Adv. Mater. 29, 1602852 (2017).

    Google Scholar 

  16. Überall, H. High-energy interference effect of bremsstrahlung and pair production in crystals. Phys. Rev. 103, 1055–1067 (1956).

    ADS  MATH  Google Scholar 

  17. Korobochko, Y. S., Kosmach, V. F. & Mineev, V. I. On coherent electron bremsstrahlung. Sov. Phys. JETP 21, 834–839 (1965).

    ADS  Google Scholar 

  18. Baryshevsky, V. G. & Feranchuk, I. D. Parametric X-rays from ultrarelativistic electrons in a crystal: theory and possibilities of practical utilization. J. Phys. France 44, 913–922 (1983).

    Google Scholar 

  19. Baryshevsky, V. G., Feranchuk, I. D. & Ulyanenkov, A. P. Parametric X-ray Radiation In Crystals (Springer, 2005).

  20. Jiang, P., Qian, X., Gu, X. & Yang, R. Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se) using time‐domain thermoreflectance. Adv. Mater. 29, 1701068 (2017).

    Google Scholar 

  21. Zan, R. et al. Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7, 10167–10174 (2013).

    Google Scholar 

  22. Lehnert, T., Lehtinen, O., Algara–Siller, G. & Kaiser, U. Electron radiation damage mechanisms in 2D MoSe2. Appl. Phys. Lett. 110, 033106 (2017).

    ADS  Google Scholar 

  23. Kirz, J., Jacobsen, C. & Howells, M. Soft X-ray microscopes and their biological applications. Q. Rev. Biophys. 28, 33–130 (1995).

    Google Scholar 

  24. de Groot, F. & Kotani, A. Core Level Spectroscopy of Solids (CRC Press, 2008).

  25. Hitchcock, A. P. Soft X-ray spectromicroscopy and ptychography. J. Electron Spectrosc. Relat. Phenom. 200, 49–63 (2015).

    Google Scholar 

  26. Agarwal, B. K. X-ray Spectroscopy: an Introduction Vol. 15 (Springer, 2013).

  27. Hayakawa, Y. et al. X-ray imaging using a tunable coherent X-ray source based on parametric X-ray radiation. J. Instrum. 8, C08001 (2013).

    Google Scholar 

  28. Carroll, F. E. Tunable monochromatic X rays: a new paradigm in medicine. Am. J. Roentgenol. 179, 583–590 (2002).

    Google Scholar 

  29. Okada, H. et al. Basic study of parametric X-ray radiation for clinical diagnosis using 125 MeV linear particle accelerator. J. Hard Tissue Biol. 24, 299–302 (2015).

    Google Scholar 

  30. Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. The Physics of Free-Electron Lasers (Springer, 2000).

  31. Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336–342 (2007).

    ADS  Google Scholar 

  32. Winick, H. & Doniach, S. Synchrotron Radiation Research (Springer, 2012).

  33. Powers, N. D. et al. Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source. Nat. Photon. 8, 28–31 (2014).

    ADS  Google Scholar 

  34. Wong, L. J., Kaminer, I., Ilic, O., Joannopoulos, J. D. & Soljačió, M. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photon. 10, 46–52 (2016).

    ADS  Google Scholar 

  35. Rosolen, G. et al. Metasurface-based multi-harmonic free-electron light source. Light Sci. Appl. 7, 64 (2018).

    ADS  Google Scholar 

  36. Pizzi, A. et al. Graphene metamaterials for intense, tunable, and compact extreme ultraviolet and X-ray sources. Adv. Sci. 7, 1901609 (2019).

    Google Scholar 

  37. Rivera, N., Wong, L. J., Joannopoulos, J. D., Soljačić, M. & Kaminer, I. Light emission based on nanophotonic vacuum forces. Nat. Phys. 15, 1284–1289 (2019).

  38. Blazhevich, S. V. et al. First observation of interference between parametric X-ray and coherent bremsstrahlung. Phys. Lett. A 195, 210–212 (1994).

    ADS  Google Scholar 

  39. Feranchuk, I. D., Ulyanenkov, A., Harada, J. & Spence, J. C. H. Parametric X-ray radiation and coherent bremsstrahlung from nonrelativistic electrons in crystals. Phys. Rev. E 62, 4225–4234 (2000).

    ADS  Google Scholar 

  40. Fraser, J. S., Sheffield, R. L. & Gray, E. R. A new high-brightness electron injector for free electron lasers driven by RF linacs. Nucl. Instrum. Methods Phys. Res. A 250, 71–76 (1986).

    ADS  Google Scholar 

  41. Dunham, B. et al. Record high-average current from a high-brightness photoinjector. Appl. Phys. Lett. 102, 034105 (2013).

    ADS  Google Scholar 

  42. Li, X. et al. Dispersion engineering in metamaterials and metasurfaces. J. Phys. D 51, 054002 (2018).

    ADS  Google Scholar 

  43. Kaminer, I. et al. Spectrally and spatially resolved Smith–Purcell radiation in plasmonic crystals with short-range disorder. Phys. Rev. X 7, 011003 (2017).

    Google Scholar 

  44. Remez, R. et al. Spectral and spatial shaping of Smith–Purcell radiation. Phys. Rev. A 96, 061801 (2017).

    ADS  Google Scholar 

  45. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Google Scholar 

  46. Gjerding, M. N., Petersen, R., Pedersen, T. G., Mortensen, N. A. & Thygesen, K. S. Layered van der Waals crystals with hyperbolic light dispersion. Nat. Commun. 8, 320 (2017).

    ADS  Google Scholar 

  47. Herman, M. A. & Sitter, H. Molecular Beam Epitaxy: Fundamentals and Current Status (Springer, 2012).

  48. Dapkus, P. D. Metalorganic chemical vapor deposition. Annu. Rev. Mater. Sci. 12, 243–269 (1982).

    ADS  Google Scholar 

  49. Graves, W., Kärtner, F., Moncton, D. & Piot, P. Intense superradiant X rays from a compact source using a nanocathode array and emittance exchange. Phys. Rev. Lett. 108, 263904 (2012).

    ADS  Google Scholar 

  50. Nanni, E. A., Graves, W. S. & Moncton, D. E. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent X-ray generation. Phys. Rev. Accel. Beams 21, 014401 (2018).

    ADS  Google Scholar 

  51. Naumova, N. et al. Attosecond electron bunches. Phys. Rev. Lett. 93, 195003 (2004).

    ADS  Google Scholar 

  52. Lim, J., Chong, Y. & Wong, L. J. Terahertz-optical intensity grating for creating high-charge, attosecond electron bunches. New J. Phys. 21, 033020 (2019).

    ADS  Google Scholar 

  53. Attwood, D. T. Soft X-Rays and Extreme Ultraviolet Radiation (Cambridge Univ. Press, 2000).

  54. Roessl, E. et al. Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography. IEEE Trans. Med. Imaging 30, 1678–1690 (2011).

    Google Scholar 

  55. Wong, L. J. et al. Laser-induced linear-field particle acceleration in free space. Sci. Rep. 7, 11159 (2017).

    ADS  Google Scholar 

  56. Wang, W. L. & Kaxiras, E. Efficient calculation of the effective single-particle potential and its application in electron microscopy. Phys. Rev. B 87, 085103 (2013).

    ADS  Google Scholar 

  57. Susi, T. et al. Efficient first principles simulation of electron scattering factors for transmission electron microscopy. Ultramicroscopy 197, 16–22 (2019).

    Google Scholar 

  58. Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).

    ADS  Google Scholar 

  59. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E =  50–30,000 eV, Z  = 1–92. At. Data Nucl. Data Tables 54, 181–342 (1993).

    ADS  Google Scholar 

  60. Budniak, A. K. et al. Exfoliated CrPS4 with promising photoconductivity. Small 16, 1905924 (2020).

    Google Scholar 

Download references

Acknowledgements

We thank Y. Kauffmann for advice and discussions. This work was supported by the ERC (Starter Grant no. 851780), the ISF (Grant no. 830/19) and the European Commission via the Marie Skłodowska-Curie Action Phonsi (H2020-MSCA-ITN-642656). H.H.S. also acknowledges the support of Marie Skłodowska-Curie Actions (H2020-MSCA-IF-2018-843830). K.S.T. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. \773122, LIMA). The Center for Nanostructured Graphene is sponsored by the Danish National Research Foundation, Project DNRF103. F.H.L.K. acknowledges financial support from the Government of Catalonia through the SGR grant, and from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0522), and Explora Ciencia FIS2017-91599-EXP. F.H.L.K. also acknowledges support by Fundacio Cellex Barcelona, Generalitat de Catalunya through the CERCA program, and the Mineco grants Plan Nacional (FIS2016-81044-P) and the Agency for Management of University and Research Grants (AGAUR) 2017 SGR 1656. Furthermore, the research leading to these results has received funding from the European Union’s Horizon 2020 under grant agreement no. 785219 (Core2) and no. 881603 (Core3) Graphene Flagship, and no. 820378 (Quantum Flagship). This work was supported by the ERC TOPONANOP under grant agreement no. 726001. L.J.W. acknowledges the support of the Agency for Science, Technology and Research (A*STAR) Advanced Manufacturing and Engineering Young Individual Research Grant (A1984c0043), and the Nanyang Assistant Professorship Start-up Grant. F.J.G.A. acknowledges support from the Spanish MINECO (Grant nos. MAT2017-88492-R and SEV2015-0522), ERC (Advanced Grant no. 789104-eNANO), the Catalan CERCA Program and Fundació Privada Cellex. I.K. was also supported by an Azrieli Faculty Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.S. spearheaded the project, designed and performed the electron microscopy experiments, prepared the samples, analysed the data and developed the superlattice theory. A.K.B. contributed to the measurements and performed electron microscopy experiments. A.K.B., H.H.S., M.B., Y.A., S.T., F.H.L.K. and E.L synthesized the vdW materials and prepared the TEM samples. R.D. and M.K. advised on experimental aspects. X.S., Y.K. and F.J.G.A. developed and executed the PXR simulations. M.K.S. and K.S.T. performed the DFT simulations. L.J.W. developed and executed the CBS simulations. F.J.G.A., L.J.W., X.S. and I.K. contributed to the discussion of the experimental results, to the comparative analysis of the different theoretical mechanisms and to the overall conclusions. M.S. and I.K. conceived the idea. I.K. supervised the project.

Corresponding authors

Correspondence to Michael Shentcis or Ido Kaminer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shentcis, M., Budniak, A.K., Shi, X. et al. Tunable free-electron X-ray radiation from van der Waals materials. Nat. Photonics 14, 686–692 (2020). https://doi.org/10.1038/s41566-020-0689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0689-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing