Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acceleration of relativistic beams using laser-generated terahertz pulses

Abstract

Particle accelerators driven by laser-generated terahertz (THz) pulses promise unprecedented control over the energy–time phase space of particle bunches compared with conventional radiofrequency technology. Here we demonstrate acceleration of a relativistic electron beam in a THz-driven linear accelerator. Narrowband THz pulses were tuned to the phase-velocity-matched operating frequency of a rectangular dielectric-lined waveguide for extended collinear interaction with 35 MeV, 60 pC electron bunches, imparting multicycle energy modulation to chirped (6 ps) bunches and injection phase-dependent energy gain (up to 10 keV) to subcycle (2 ps) bunches. These proof-of-principle results establish a route to whole-bunch linear acceleration of subpicosecond particle beams, directly applicable to scaled-up and multistaged concepts capable of preserving beam quality, thus marking a key milestone for future THz-driven acceleration of relativistic beams.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up.
Fig. 2: Multicycle energy modulation.
Fig. 3: Phase-velocity matching.
Fig. 4: Subcycle bunch acceleration.

Similar content being viewed by others

Data availability

The data associated with this paper are openly available from the Zenodo data repository at https://doi.org/10.5281/zenodo.3903506. Source data are provided with this paper.

References

  1. Peralta, E. A. et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91–94 (2013).

    Article  ADS  Google Scholar 

  2. Breuer, J. & Hommelhoff, P. Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett. 111, 134803 (2013).

    Article  ADS  Google Scholar 

  3. Naranjo, B., Valloni, A., Putterman, S. & Rosenzweig, J. B. Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics. Phys. Rev. Lett. 109, 164803 (2012).

    Article  ADS  Google Scholar 

  4. Niedermayer, U., Egenolf, T., Boine-Frankenheim, O. & Hommelhoff, P. Alternating-phase focusing for dielectric-laser acceleration. Phys. Rev. Lett. 121, 214801 (2018).

    Article  ADS  Google Scholar 

  5. Liao, G. et al. Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils. Proc. Natl Acad. Sci. USA 116, 3994–3999 (2019).

    Article  ADS  Google Scholar 

  6. Nanni, E. A. et al. Terahertz-driven linear electron acceleration. Nat. Commun. 6, 8486 (2015).

    Article  ADS  Google Scholar 

  7. Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  8. Huang, W. R. et al. Terahertz-driven, all-optical electron gun. Optica 3, 1209–1212 (2016).

    Article  ADS  Google Scholar 

  9. Zhang, D. et al. Segmented terahertz electron accelerator and manipulator (STEAM). Nat. Photon. 12, 336–342 (2018).

    Article  ADS  Google Scholar 

  10. England, R. J. et al. Dielectric laser accelerators. Rev. Mod. Phys. 86, 1337–1389 (2014).

    Article  ADS  Google Scholar 

  11. O’Shea, B. D. et al. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators. Nat. Commun. 7, 12763 (2016).

    Article  ADS  Google Scholar 

  12. Carbajo, S. et al. Direct longitudinal laser acceleration of electrons in free space. Phys. Rev. Accel. Beams 19, 021303 (2016).

    Article  ADS  Google Scholar 

  13. Thévenet, M. et al. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors. Nat. Phys. 12, 355–360 (2016).

    Article  Google Scholar 

  14. Faure, J. et al. A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).

    Article  ADS  Google Scholar 

  15. Leemans, W. P. et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002 (2014).

    Article  ADS  Google Scholar 

  16. Guénot, D. et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photon. 11, 293–296 (2017).

    Article  ADS  Google Scholar 

  17. Li, S. & Jones, R. R. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses. Nat. Commun. 7, 13405 (2016).

    Article  ADS  Google Scholar 

  18. Zhao, L. et al. Terahertz oscilloscope for recording time information of ultrashort electron beams. Phys. Rev. Lett. 122, 144801 (2019).

    Article  ADS  Google Scholar 

  19. Walsh, D. A. et al. Demonstration of sub-luminal propagation of single-cycle terahertz pulses for particle acceleration. Nat. Commun. 8, 421 (2017).

    Article  ADS  Google Scholar 

  20. Curry, E., Fabbri, S., Maxson, J., Musumeci, P. & Gover, A. Meter-scale terahertz-driven acceleration of a relativistic beam. Phys. Rev. Lett. 120, 094801 (2018).

    Article  ADS  Google Scholar 

  21. Clarke, J. A. et al. CLARA conceptual design report. J. Instrum. 9, T05001 (2014).

    Article  Google Scholar 

  22. Chen, Z., Zhou, X., Werley, C. A. & Nelson, K. A. Generation of high power tunable multicycle teraherz pulses. Appl. Phys. Lett. 99, 071102 (2011).

    Article  ADS  Google Scholar 

  23. Uchida, K. et al. Time-resolved observation of coherent excitonic nonlinear response with a table-top narrowband THz pulse wave. Appl. Phys. Lett. 107, 221106 (2015).

    Article  ADS  Google Scholar 

  24. Cliffe, M. J., Graham, D. M. & Jamison, S. P. Longitudinally polarized single-cycle terahertz pulses generated with high electric field strengths. Appl. Phys. Lett. 108, 221102 (2016).

    Article  ADS  Google Scholar 

  25. Hibberd, M. T. et al. Magnetic-field tailoring of the terahertz polarization emitted from a spintronic source. Appl. Phys. Lett. 114, 031101 (2019).

    Article  ADS  Google Scholar 

  26. Healy, A. L., Burt, G. & Jamison, S. P. Electron–terahertz interaction in dielectric-lined waveguide structures for electron manipulation. Nucl. Instrum. Methods Phys. Res. A 909, 199–203 (2018).

    Article  ADS  Google Scholar 

  27. Röhrs, M., Gerth, C., Schlarb, H., Schmidt, B. & Schmüser, P. Time-resolved electron beam phase space tomography at a soft X-ray free-electron laser. Phys. Rev. ST Accel. Beams 12, 050704 (2009).

    Article  ADS  Google Scholar 

  28. Ahr, F. et al. Narrowband terahertz generation with chirped-and-delayed laser pulses in periodically poled lithium niobate. Opt. Lett. 42, 2118–2121 (2017).

    Article  ADS  Google Scholar 

  29. Snively, E. C. et al. Femtosecond compression dynamics and timing jitter suppression in a THz-driven electron bunch compressor. Phys. Rev. Lett. 124, 054801 (2020).

    Article  ADS  Google Scholar 

  30. Zhao, L. et al. Femtosecond relativistic electron beam with reduced timing jitter from THz driven beam compression. Phys. Rev. Lett. 124, 054802 (2020).

    Article  ADS  Google Scholar 

  31. Priebe, G. et al. Inverse Compton backscattering source driven by the multi-10 TW laser installed at Daresbury. Laser Part. Beams 26, 649–660 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical and scientific teams at the Compact Linear Accelerator for Research and Applications (CLARA) facility for their support and considerable help with all aspects of the operation of the accelerator. We also acknowledge P. G. Huggard and M. Beardsley from Rutherford Appleton Laboratory (RAL) – Space for the manufacture of the dielectric-lined waveguide structure and for the provision of a THz Schottky diode used for THz-electron beam synchronization. This work was supported by the United Kingdom Science and Technology Facilities Council (grant nos. ST/N00308X/1, ST/N003063/1 and ST/P002056/1).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the experiment and contributed to data analysis. M.T.H., D.S.L., D.A.W., V.G., O.J.F. and D.M.G. developed the THz source. A.L.H., G.B. and S.P.J. designed the DLW. A.L.H., E.J.H.S., O.J.F., R.B.A. and S.P.J. modelled the electron energy spectra and performed the longitudinal phase-space calculations. V.G. characterized the DLW and developed the data acquisition software. T.H.P., J.K.J. and Y.S. analysed the beam dynamics of the CLARA accelerator. M.T.H., D.M.G. and S.P.J. wrote the manuscript with contributions from all. E.W.S., R.B.A., G.B., D.M.G. and S.P.J. managed the project.

Corresponding author

Correspondence to Steven P. Jamison.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information and figures on waveguide dimensions (Fig. 1), waveguide dispersion (Fig. 2), THz transmission measurements (Fig. 3), interaction length (Fig. 4) and transverse effects.

Source data

Source Data Fig. 1

Numerical data used to generate Fig. 1b,c.

Source Data Fig. 2

Numerical data used to generate Fig. 2a–f.

Source Data Fig. 3

Numerical data used to generate Fig. 3.

Source Data Fig. 4

Numerical data used to generate Fig. 4a–d.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hibberd, M.T., Healy, A.L., Lake, D.S. et al. Acceleration of relativistic beams using laser-generated terahertz pulses. Nat. Photonics 14, 755–759 (2020). https://doi.org/10.1038/s41566-020-0674-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0674-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing