Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photoelectric effect with a twist

Abstract

Photons have fixed spin and unbounded orbital angular momentum (OAM). While the former is manifested in the polarization of light, the latter corresponds to the spatial phase distribution of its wavefront1. The distinctive way in which the photon spin dictates the electron motion upon light–matter interaction is the basis for numerous well-established spectroscopies. By contrast, imprinting OAM on a matter wave, specifically on a propagating electron, is generally considered very challenging and the anticipated effect undetectable2. In refs. 3,4, the authors provided evidence of OAM-dependent absorption of light by a bound electron. Here, we seek to observe an OAM-dependent dichroic photoelectric effect, using a sample of He atoms. Surprisingly, we find that the OAM of an optical field can be imprinted coherently onto a propagating electron wave. Our results reveal new aspects of light–matter interaction and point to a new kind of single-photon electron spectroscopy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental set-up and first evidence of OAM-dependent dichroism.
Fig. 2: Theoretical description of the imprinting of light OAM on the matter wave of a single photoelectron released from a He atom.
Fig. 3: Theoretical description of the imprinting of light OAM on the matter waves of photoelectrons released from a sample of He atoms.
Fig. 4: Experimental versus theoretical photoelectron spectra and DCSs for different combinations of infrared spin and OAM.

Data availability

The plotted data and other information related to this study are available from the corresponding author upon reasonable request.

Code availability

The numerical code supporting the experimental results reported in this paper is available upon reasonable request.

References

  1. 1.

    Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    ADS  Article  Google Scholar 

  2. 2.

    Kaneyasu, T. et al. Limitations in photoionization of helium by an extreme ultraviolet optical vortex. Phys. Rev. A 95, 023413 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Schmiegelow, C. T. et al. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 7, 12998 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Afanasev, A. et al. Experimental verification of position-dependent angular-momentum selection rules for absorption of twisted light by a bound electron. New J. Phys. 20, 023032 (2018).

    ADS  Article  Google Scholar 

  5. 5.

    Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012).

    ADS  Article  Google Scholar 

  6. 6.

    Köksal, K. & Berakdar, J. Charge–current generation in atomic systems induced by optical vortices. Phys. Rev. A 86, 063812 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    Picón, A. et al. Photoionization with orbital angular momentum beams. Opt. Express 18, 3660–3671 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    Wätzel, J., Pavlyukh, Y., A Schäffer, A. F. & Berakdar, J. Optical vortex driven charge current loop and optomagnetism in fullerenes. Carbon 99, 439–443 (2016).

    Article  Google Scholar 

  9. 9.

    Lyamayev, V. A. et al. Modular end-station for atomic, molecular and cluster science at the low density matter beamline of FERMI@Elettra. J. Phys. B 46, 164007 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    Glover, T. E., Schoenlein, R. W., Chin, A. H. & Shank, C. V. Observation of laser assisted photoelectric effect and femtosecond high order harmonic radiation. Phys. Rev. Lett. 76, 2468–2471 (1996).

    ADS  Article  Google Scholar 

  11. 11.

    Meyer, M., Costello, J. T., Düsterer, S., Li, W. B. & Radcliffe, P. Two-colour experiments in the gas phase. J. Phys. B 43, 194006 (2010).

    ADS  Article  Google Scholar 

  12. 12.

    O’Keeffe, P. et al. Polarization effects in two-photon nonresonant ionization of argon with extreme-ultraviolet and infrared femtosecond pulses. Phys. Rev. A 69, 051401 (2004).

    ADS  Article  Google Scholar 

  13. 13.

    Meyer, M. et al. Polarization control in two-color above-threshold ionization of atomic helium. Phys. Rev. Lett. 101, 193002 (2008).

    ADS  Article  Google Scholar 

  14. 14.

    Guyétand, O. et al. Evolution of angular distributions in two-colour, few-photon ionization of helium. J. Phys. B 41, 051002 (2008).

    ADS  Article  Google Scholar 

  15. 15.

    Haber, L. H., Doughty, B. & Leone, S. R. Photoelectron angular distributions and cross section ratios of two-color two-photon above threshold ionization of argon. J. Phys. Chem. A 113, 13152–13158 (2009).

    Article  Google Scholar 

  16. 16.

    Haber, L. H., Doughty, B. & Leone, S. R. Energy-dependent photoelectron angular distributions of two-color two-photon above threshold ionization of atomic helium. Phys. Rev. A 84, 013416 (2011).

    ADS  Article  Google Scholar 

  17. 17.

    O’Keeffe, P. et al. Near-threshold photoelectron angular distributions from two-photon resonant photoionization of He. New J. Phys 15, 013023 (2013).

    ADS  Article  Google Scholar 

  18. 18.

    Grum-Grzhimailo, A. N. & Gryzlova, E. V. Nondipole effects in the angular distribution of photoelectrons in two-photon two-color above-threshold atomic ionization. Phys. Rev. A 89, 043424 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    Taïeb, R., Véniard, V., Maquet, A., Manakov, N. L. & Marmo, S. I. Circular dichroism from unpolarized atoms in multiphoton multicolor ionization. Phys. Rev. A 62, 013402 (2000).

    ADS  Article  Google Scholar 

  20. 20.

    Kazansky, A. K., Grigorieva, A. V. & Kabachnik, N. M. Circular dichroism in laser-assisted short-pulse photoionization. Phys. Rev. Lett. 107, 253002 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    Mazza, T. et al. Determining the polarization state of an extreme ultraviolet free-electron laser beam using atomic circular dichroism. Nat. Commun. 5, 3648 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Quinteiro, G. F., Schmidt-Kaler, F. & Schmiegelow, C. T. Twisted-light–ion interaction: the role of longitudinal fields. Phys. Rev. Lett. 119, 253203 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Vrakking, M. J. J. An iterative procedure for the inversion of two-dimensional ion/photoelectron imaging experiments. Rev. Sci. Instrum. 72, 4084 (2001).

    ADS  Article  Google Scholar 

  24. 24.

    Zangrando, M. et al. PADReS: The photon analysis delivery and reduction system at the FERMI@Elettra FEL user facility. Rev. Sci. Instrum. 80, 113110 (2009).

    ADS  Article  Google Scholar 

  25. 25.

    Raimondi, L. et al. Kirkpatrick–Baez active optics system at FERMI: system performance analysis. J. Synchrotron Rad. 26, 1462–1472 (2019).

    Article  Google Scholar 

  26. 26.

    Svetina, C. et al. The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning. J. Synchrotron Rad. 22, 538–543 (2015).

    Article  Google Scholar 

  27. 27.

    Sarsa, A., Gálvez, F. & Buendia, E. Parameterized optimized effective potential for the ground state of the atoms He through Xe. At. Data Nucl. Data Tables 88, 163–202 (2004).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the project ‘Triggering forbidden phenomena with twisted light and particle beams’ (no. J1–8134), funded by the Slovenian Research Agency (ARRS), and of EU-H2020 project NFFA (grant no. 654360). The theoretical study has been financed by the German Science Foundation (DFG), within the priority programme 1840, ‘Quantum dynamics in tailored intense fields’ (SFB-TRR227 and WA 4352/2-1).

Author information

Affiliations

Authors

Contributions

G.D.N., P.R.R., J.W. and J.B. proposed the experiment, the feasibility of which was discussed with M.C., M.Ž. and C.C. G.D.N. coordinated the experiment. J.W. and J.B. developed the theoretical model and J.W. carried out the simulations. C.C., A.M., B.Ressel, B.Rösner, J.W., K.H., M.C., M.D.F., M.S., O.P., Š.K., P.R.R. and G.D.N. carried out the measurements. P.R.R., E.A., A.D., A.S., B.Rösner, C.D., M.B.D., M.D.F., M.Manfredda, M.Z., N.M. and S.S. prepared the light source. G.D.N., B.Rösner and M.D.F. carried out the data analysis. G.D.N., J.W. and J.B. wrote the first draft of the manuscript, which was first reviewed by A.M., B.Rösner, C.C., M.Meyer, M.Ž. and P.R.R. and then discussed with all co-authors.

Corresponding author

Correspondence to Giovanni De Ninno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Ninno, G., Wätzel, J., Ribič, P.R. et al. Photoelectric effect with a twist. Nat. Photonics 14, 554–558 (2020). https://doi.org/10.1038/s41566-020-0669-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing