Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

A truly one-way lane for surface plasmon polaritons

Unidirectional and topological surface plasmon polaritons are currently attracting substantial interest and intense debate. Realistic material models and energy conservation considerations are essential to correctly understand extreme wave effects in non-reciprocal plasmonics, and to assess their potential for novel devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Unidirectional SPPs.
Fig. 2: Impact of dissipation and non-locality.

References

  1. Ishimaru, A. Unidirectional Waves in Anisotropic Media and the Resolution of the Thermodynamic Paradox Technical Report No. 69 (US Air Force, 1962).

  2. Seshadri, S. R. & Pickard, W. F. IEEE Trans. Microw. Theory Tech. 12, 529–541 (1964).

    Article  ADS  Google Scholar 

  3. Brion, J. J., Wallis, R. F., Hartstein, A. & Burstein, E. Phys. Rev. Lett. 28, 1455–1458 (1972).

    Article  ADS  Google Scholar 

  4. Yu, Z., Veronis, G., Wang, Z. & Fan, S. Phys. Rev. Lett. 100, 023902 (2008).

    Article  ADS  Google Scholar 

  5. Hu, B., Wang, Q. J. & Zhang, Y. Opt. Lett. 37, 1895–1897 (2012).

    Article  ADS  Google Scholar 

  6. Davoyan, A. R. & Engheta, N. Phys. Rev. Lett. 111, 257401 (2013).

    Article  ADS  Google Scholar 

  7. Davoyan, A. R. & Engheta, N. Phys. Rev. Lett. 111, 047401 (2013).

    Article  ADS  Google Scholar 

  8. Chin, J. Y. et al. Nat. Commun. 4, 1599 (2013).

    Article  ADS  Google Scholar 

  9. Silveirinha, M. G. Phys. Rev. B 92, 125153 (2015).

    Article  ADS  Google Scholar 

  10. Jin, D. et al. Nat. Commun. 7, 13486 (2016).

    Article  ADS  Google Scholar 

  11. Hassani Gangaraj, S. A., Silveirinha, M. G. & Hanson, G. W. IEEE J. Multiscale Multiphys. Comput. Tech. 2, 3–17 (2017).

    Article  ADS  Google Scholar 

  12. Hassani Gangaraj, S. A. & Monticone, F. Phys. Rev. Lett. 121, 093901 (2018).

    Article  ADS  Google Scholar 

  13. Hassani Gangaraj, S. A. et al. Phys. Rev. B 99, 245414 (2018).

    Article  ADS  Google Scholar 

  14. Tsakmakidis, K. et al. Science 356, 1260–1264 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  15. Tsang, M. Opt. Lett. 43, 150–153 (2018).

    Article  ADS  Google Scholar 

  16. Chettiar, U. K., Davoyan, A. R. & Engheta, N. Opt. Lett. 39, 1760–1763 (2014).

    Article  ADS  Google Scholar 

  17. Mann, S. A., Sounas, D. L. & Alu, A. Optica 6, 104–110 (2019).

    Article  ADS  Google Scholar 

  18. Buddhiraju, S. et al. Nat. Commun. 11, 674 (2020).

    Article  ADS  Google Scholar 

  19. Horsley, S. A. R. Phys. Rev. A 98, 043837 (2018).

    Article  ADS  Google Scholar 

  20. Van Mechelen, T. & Jacob, Z. Nanophotonics 8, 1399–1416 (2019).

    Article  Google Scholar 

  21. Hassani Gangaraj, S. A. & Monticone, F. Optica 6, 1158–1165 (2019).

    Article  ADS  Google Scholar 

  22. Silveirinha, M. G. Phys. Rev. X 9, 011037 (2019).

    Google Scholar 

  23. Hassani Gangaraj, S. A. & Monticone, F. Phys. Rev. Lett. 124, 153901 (2020).

    Article  ADS  Google Scholar 

  24. Raza, S., Bozhevolnyi, S. I., Wubs, M. & Mortensen, N. A. J. Phys. Condens. Matter 27, 183204 (2015).

    Article  ADS  Google Scholar 

  25. Gonçalves, P. A. D. et al. Nat. Commun. 11, 366 (2020).

    Article  ADS  Google Scholar 

  26. Mortensen, N. A. Photon. Nanostructures Fund. Appl. 11, 303–309 (2013).

    Article  ADS  Google Scholar 

  27. Yan, W., Wubs, M. & Mortensen, N. A. Phys. Rev. B 86, 205429 (2012).

    Article  ADS  Google Scholar 

  28. Raza, S. et al. Phys. Rev. B 88, 115401 (2013).

    Article  ADS  Google Scholar 

  29. Boardman, A. D. & Ruppin, R. Surf. Sci. 112, 153–167 (1981).

    Article  ADS  Google Scholar 

  30. Barzilai, G. & Gerosa, G. Proc. IEE 113, 285–288 (1966).

    Google Scholar 

  31. Stockman, M. I. Phys. Rev. Lett. 93, 137404 (2004).

    Article  ADS  Google Scholar 

  32. Yanik, M. F. & Fan, S. Phys. Rev. Lett. 92, 083901 (2004).

    Article  ADS  Google Scholar 

  33. Khurgin, J. B. Faraday Discuss. 214, 35–58 (2019).

    Article  ADS  Google Scholar 

  34. Khurgin, J. B. et al. ACS Photon. 4, 2871–2880 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

I acknowledge support from the National Science Foundation (NSF) with grant no. 1741694, and the Air Force Office of Scientific Research with grant no. FA9550-19-1-0043. I would like to thank S. Ali Hassani Gangaraj from Cornell University and J. Khurgin from Johns Hopkins University for useful discussions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Monticone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monticone, F. A truly one-way lane for surface plasmon polaritons. Nat. Photonics 14, 461–465 (2020). https://doi.org/10.1038/s41566-020-0662-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0662-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing