Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A truly one-way lane for surface plasmon polaritons

Unidirectional and topological surface plasmon polaritons are currently attracting substantial interest and intense debate. Realistic material models and energy conservation considerations are essential to correctly understand extreme wave effects in non-reciprocal plasmonics, and to assess their potential for novel devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Unidirectional SPPs.
Fig. 2: Impact of dissipation and non-locality.

References

  1. 1.

    Ishimaru, A. Unidirectional Waves in Anisotropic Media and the Resolution of the Thermodynamic Paradox Technical Report No. 69 (US Air Force, 1962).

  2. 2.

    Seshadri, S. R. & Pickard, W. F. IEEE Trans. Microw. Theory Tech. 12, 529–541 (1964).

    ADS  Article  Google Scholar 

  3. 3.

    Brion, J. J., Wallis, R. F., Hartstein, A. & Burstein, E. Phys. Rev. Lett. 28, 1455–1458 (1972).

    ADS  Article  Google Scholar 

  4. 4.

    Yu, Z., Veronis, G., Wang, Z. & Fan, S. Phys. Rev. Lett. 100, 023902 (2008).

    ADS  Article  Google Scholar 

  5. 5.

    Hu, B., Wang, Q. J. & Zhang, Y. Opt. Lett. 37, 1895–1897 (2012).

    ADS  Article  Google Scholar 

  6. 6.

    Davoyan, A. R. & Engheta, N. Phys. Rev. Lett. 111, 257401 (2013).

    ADS  Article  Google Scholar 

  7. 7.

    Davoyan, A. R. & Engheta, N. Phys. Rev. Lett. 111, 047401 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    Chin, J. Y. et al. Nat. Commun. 4, 1599 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Silveirinha, M. G. Phys. Rev. B 92, 125153 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Jin, D. et al. Nat. Commun. 7, 13486 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Hassani Gangaraj, S. A., Silveirinha, M. G. & Hanson, G. W. IEEE J. Multiscale Multiphys. Comput. Tech. 2, 3–17 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Hassani Gangaraj, S. A. & Monticone, F. Phys. Rev. Lett. 121, 093901 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Hassani Gangaraj, S. A. et al. Phys. Rev. B 99, 245414 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Tsakmakidis, K. et al. Science 356, 1260–1264 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Tsang, M. Opt. Lett. 43, 150–153 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    Chettiar, U. K., Davoyan, A. R. & Engheta, N. Opt. Lett. 39, 1760–1763 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Mann, S. A., Sounas, D. L. & Alu, A. Optica 6, 104–110 (2019).

    ADS  Article  Google Scholar 

  18. 18.

    Buddhiraju, S. et al. Nat. Commun. 11, 674 (2020).

    ADS  Article  Google Scholar 

  19. 19.

    Horsley, S. A. R. Phys. Rev. A 98, 043837 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Van Mechelen, T. & Jacob, Z. Nanophotonics 8, 1399–1416 (2019).

    Article  Google Scholar 

  21. 21.

    Hassani Gangaraj, S. A. & Monticone, F. Optica 6, 1158–1165 (2019).

    ADS  Article  Google Scholar 

  22. 22.

    Silveirinha, M. G. Phys. Rev. X 9, 011037 (2019).

    Google Scholar 

  23. 23.

    Hassani Gangaraj, S. A. & Monticone, F. Phys. Rev. Lett. 124, 153901 (2020).

    ADS  Article  Google Scholar 

  24. 24.

    Raza, S., Bozhevolnyi, S. I., Wubs, M. & Mortensen, N. A. J. Phys. Condens. Matter 27, 183204 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Gonçalves, P. A. D. et al. Nat. Commun. 11, 366 (2020).

    ADS  Article  Google Scholar 

  26. 26.

    Mortensen, N. A. Photon. Nanostructures Fund. Appl. 11, 303–309 (2013).

    ADS  Article  Google Scholar 

  27. 27.

    Yan, W., Wubs, M. & Mortensen, N. A. Phys. Rev. B 86, 205429 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    Raza, S. et al. Phys. Rev. B 88, 115401 (2013).

    ADS  Article  Google Scholar 

  29. 29.

    Boardman, A. D. & Ruppin, R. Surf. Sci. 112, 153–167 (1981).

    ADS  Article  Google Scholar 

  30. 30.

    Barzilai, G. & Gerosa, G. Proc. IEE 113, 285–288 (1966).

    Google Scholar 

  31. 31.

    Stockman, M. I. Phys. Rev. Lett. 93, 137404 (2004).

    ADS  Article  Google Scholar 

  32. 32.

    Yanik, M. F. & Fan, S. Phys. Rev. Lett. 92, 083901 (2004).

    ADS  Article  Google Scholar 

  33. 33.

    Khurgin, J. B. Faraday Discuss. 214, 35–58 (2019).

    ADS  Article  Google Scholar 

  34. 34.

    Khurgin, J. B. et al. ACS Photon. 4, 2871–2880 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

I acknowledge support from the National Science Foundation (NSF) with grant no. 1741694, and the Air Force Office of Scientific Research with grant no. FA9550-19-1-0043. I would like to thank S. Ali Hassani Gangaraj from Cornell University and J. Khurgin from Johns Hopkins University for useful discussions during the preparation of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesco Monticone.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Monticone, F. A truly one-way lane for surface plasmon polaritons. Nat. Photonics 14, 461–465 (2020). https://doi.org/10.1038/s41566-020-0662-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing