Abstract
Optical vortices, beams with spiral wavefronts and screw phase dislocations, have been attracting increasing interest in various fields. Here, we theoretically propose and experimentally realize an easy approach to generating optical vortices. We leverage the inherent momentum-space topological vortex-like response of polarization (strong polarization anisotropy) around bound states in the continuum of two-dimensional periodic structures, for example photonic crystal slabs, to induce Pancharatnam–Berry phases and spin–orbit interaction in the beams. This new class of optical vortex generators operates in momentum space, meaning that the structure is almost homogeneous without a real-space centre. In principle, any even-order optical vortex that is a diffraction-resistant high-order quasi-Bessel beam can be achieved at any desired working wavelength. The proposed approach expands the application of bound states in the continuum and topological photonics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.
References
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).
Bliokh, K. Y. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. Phys. Rev. Lett. 97, 043901 (2006).
Dennis, M. R., O’Holleran, K. & Padgett, M. J. in Progress in Optics Vol. 53 (ed. Wolf, E.) 293–363 (Elsevier, 2009).
Fürhapter, S., Jesacher, A., Bernet, S. & Ritsch-Marte, M. Spiral interferometry. Opt. Lett. 30, 1953–1955 (2005).
Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).
Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).
Walker, G., Arnold, A. S. & Franke-Arnold, S. Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor. Phys. Rev. Lett. 108, 243601 (2012).
Willner, A. E. et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 7, 66–106 (2015).
Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).
Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).
Tamburini, F., Mari, E., Thidé, B., Barbieri, C. & Romanato, F. Experimental verification of photon angular momentum and vorticity with radio techniques. Appl. Phys. Lett. 99, 204102 (2011).
Karimi, E. et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, e167 (2014).
Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).
Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).
Beijersbergen, M., Coerwinkel, R., Kristensen, M. & Woerdman, J. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112, 321–327 (1994).
Bai, Q., Tennant, A. & Allen, B. Experimental circular phased array for generating OAM radio beams. Electron. Lett. 50, 1414–1415 (2014).
Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).
Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).
Berry, M. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).
Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljačić, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).
Zhang, Y. et al. Observation of polarization vortices in momentum space. Phys. Rev. Lett. 120, 186103 (2018).
Doeleman, H. M., Monticone, F., den Hollander, W., Alù, A. & Koenderink, A. F. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photon. 12, 397–401 (2018).
Chen, W., Chen, Y. & Liu, W. Singularities and Poincaré indices of electromagnetic multipoles. Phys. Rev. Lett. 122, 153907 (2019).
Durnin, J., Miceli, J. J. & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987).
Sadrieva, Z., Frizyuk, K., Petrov, M., Kivshar, Y. & Bogdanov, A. Multipolar origin of bound states in the continuum. Phys. Rev. B 100, 115303 (2019).
Sadreev, A. F., Bulgakov, E. N. & Rotter, I. Bound states in the continuum in open quantum billiards with a variable shape. Phys. Rev. B 73, 235342 (2006).
Bulgakov, E. N. & Sadreev, A. F. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B 78, 075105 (2008).
Molina, M. I., Miroshnichenko, A. E. & Kivshar, Y. S. Surface bound states in the continuum. Phys. Rev. Lett. 108, 070401 (2012).
Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).
Bulgakov, E. N. & Sadreev, A. F. Bloch bound states in the radiation continuum in a periodic array of dielectric rods. Phys. Rev. A 90, 053801 (2014).
Yang, Y., Peng, C., Liang, Y., Li, Z. & Noda, S. Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett. 113, 037401 (2014).
Gomis-Bresco, J., Artigas, D. & Torner, L. Anisotropy-induced photonic bound states in the continuum. Nat. Photon. 11, 232–236 (2017).
Guo, Y., Xiao, M. & Fan, S. Topologically protected complete polarization conversion. Phys. Rev. Lett. 119, 167401 (2017).
Jin, J. et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature 574, 501–504 (2019).
Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).
Cerjan, A., Hsu, C. W. & Rechtsman, M. C. Bound states in the continuum through environmental design. Phys. Rev. Lett. 123, 023902 (2019).
Hasman, E., Biener, G., Niv, A. & Kleiner, V. in Progress in Optics Vol. 47 (ed. Wolf, E.) 215–289 (Elsevier, 2005).
Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).
Bahari, B. et al. Integrated and steerable vortex lasers using bound states in continuum. Preprint at https://arxiv.org/abs/1707.00181 (2017).
Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018).
Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).
Adachi, H., Akahoshi, S. & Miyakawa, K. Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light. Phys. Rev. A 75, 063409 (2007).
Zhao, Y., Edgar, J. S., Jeffries, G. D. M., McGloin, D. & Chiu, D. T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99, 073901 (2007).
Monteiro, P. B., Neto, P. A. M. & Nussenzveig, H. M. Angular momentum of focused beams: beyond the paraxial approximation. Phys. Rev. A 79, 033830 (2009).
Brasselet, E., Murazawa, N., Misawa, H. & Juodkazis, S. Optical vortices from liquid crystal droplets. Phys. Rev. Lett. 103, 103903 (2009).
Bliokh, K. Y. et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express 19, 26132–26149 (2011).
Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).
Huang, L. et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci. Appl. 2, e70 (2013).
Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013).
Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).
Rafayelyan, M., Tkachenko, G. & Brasselet, E. Reflective spin–orbit geometric phase from chiral anisotropic optical media. Phys. Rev. Lett. 116, 253902 (2016).
Carlon Zambon, N. et al. Optically controlling the emission chirality of microlasers. Nat. Photon. 13, 283–288 (2019).
Acknowledgements
We thank C. T. Chan and H. Yin for discussions. The work was supported by the China National Key Basic Research Program (2016YFA0301103, 2016YFA0302000 and 2018YFA0306201) and the National Science Foundation of China (11774063, 11727811, 91750102 and 91963212). L.S. was further supported by the Science and Technology Commission of Shanghai Municipality (19XD1434600, 2019SHZDZX01 and 19DZ2253000).
Author information
Authors and Affiliations
Contributions
W.L., L.S. and J.Z. conceived the basic idea for this work. W.L. gave the theoretical explanation. B.W. and W.L. designed the structures, carried out the finite-element method and the finite-difference time-domain method simulations and analysed the simulated and measured data. B.W. and J.W. performed the sample fabrications. B.W., M.Z. and J.W. performed the optical measurements. M.Z. and Y.Z. constructed the measurement system. L.S. and J.Z. supervised the research and the development of the manuscript. W.L. wrote the draft of the manuscript, and all authors took part in the discussion and revision and approved the final copy of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–10 and discussions.
Rights and permissions
About this article
Cite this article
Wang, B., Liu, W., Zhao, M. et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics 14, 623–628 (2020). https://doi.org/10.1038/s41566-020-0658-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-020-0658-1
This article is cited by
-
Optical vortex ladder via Sisyphus pumping of Pseudospin
Nature Communications (2024)
-
Boundary-localized many-body bound states in the continuum
Communications Physics (2024)
-
Skyrmion engineering with origami
Scientific Reports (2024)
-
Radiationless optical modes in metasurfaces: recent progress and applications
Light: Science & Applications (2024)
-
Orbital angular momentum lasers
Nature Reviews Physics (2024)