Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal decoherence and laser cooling of Kerr microresonator solitons

Abstract

Thermal noise is ubiquitous in microscopic systems and high-precision measurements. The control of thermal noise would reveal quantum regimes1 and enable fundamental physics searches2. Recently, nonlinearity in microresonators has enabled laser devices such as Kerr microresonator soliton frequency combs3. Soliton microcombs explore nonlinear dynamics and enable optical synthesizers4, optical clockwork5 and data communications systems6. Here, we explore how thermal noise leads to the fundamental decoherence of microcombs. We show that a particle-like soliton, which is an ensemble of comb modes, is closely coupled to the thermal fluctuations of its silicon-chip-based resonator. The microcomb modal linewidth is thus thermally broadened, and we characterize these thermal-noise correlations through a soliton effective temperature. Moreover, we demonstrate that passive laser cooling reduces soliton thermal decoherence to far below the ambient-temperature limit. We implement laser cooling by photothermal forcing, and we observe cooling of the frequency comb modes to 84 K. Our work illuminates inherent connections between nonlinear photonics and microscopic fluctuations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of soliton thermal decoherence.
Fig. 2: Soliton thermal-noise coupling.
Fig. 3: Soliton laser cooling.
Fig. 4: Universal thermal fluctuations.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  Google Scholar 

  2. Parker, R. H., Yu, C., Zhong, W., Estey, B. & Müller, H. Measurement of the fine-structure constant as a test of the standard model. Science 360, 191–195 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  3. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  4. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  5. Drake, T. E. et al. Terahertz-rate, Kerr-microresonator optical clockwork. Phys. Rev. X 9, 031023 (2019).

    Google Scholar 

  6. Marin-Palomo, P. et al. Microresonator solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  7. Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. in Statistical Physics Part I 333–364 (Pergamon Press, 1980).

  8. Numata, K., Kemery, A. & Camp, J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602 (2004).

    Article  ADS  Google Scholar 

  9. Liu, Y. T. & Thorne, K. S. Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses. Phys. Rev. D 62, 122002 (2000).

    Article  ADS  Google Scholar 

  10. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  11. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  Google Scholar 

  12. Phillips, W. D. Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998).

    Article  ADS  Google Scholar 

  13. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  14. Metzger, C. H. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004).

    Article  Google Scholar 

  15. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

    Article  Google Scholar 

  16. Seletskiy, D. V. et al. Laser cooling of solids to cryogenic temperatures. Nat. Photon. 4, 161–164 (2010).

    Article  Google Scholar 

  17. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    Article  Google Scholar 

  18. Matsko, A. B., Savchenkov, A. A., Yu, N. & Maleki, L. Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations. J. Opt. Soc. Am. B 24, 1324–1335 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  19. Li, X. et al. Universal isocontours for dissipative Kerr solitons. Opt. Lett. 43, 2567–2570 (2018).

    Article  ADS  Google Scholar 

  20. Bao, C. et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett. 117, 163901 (2016).

    Article  ADS  Google Scholar 

  21. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    Article  ADS  Google Scholar 

  22. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  23. Gorodetsky, M. L. & Grudinin, I. S. Fundamental thermal fluctuations in microspheres. J. Opt. Soc. Am. B 21, 697–705 (2004).

    Article  ADS  Google Scholar 

  24. Sun, X., Luo, R., Zhang, X.-C. & Lin, Q. Squeezing the fundamental temperature fluctuations of a high-Q microresonator. Phys. Rev. A 95, 023822 (2017).

    Article  ADS  Google Scholar 

  25. Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun. 8, 14869 (2017).

    Article  ADS  Google Scholar 

  26. Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).

    Article  ADS  Google Scholar 

  27. Grudinin, I., Lee, H., Chen, T. & Vahala, K. Compensation of thermal nonlinearity effect in optical resonators. Opt. Express 19, 7365–7372 (2011).

    Article  ADS  Google Scholar 

  28. Zhang, S. et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica 6, 206–212 (2019).

    Article  ADS  Google Scholar 

  29. Restrepo, J., Gabelli, J., Ciuti, C. & Favero, I. Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator. C. R. Phys. 12, 860–870 (2011).

    Article  ADS  Google Scholar 

  30. Briles, T. C. et al. Interlocking kerr-microresonator frequency combs for microwave to optical synthesis. Opt. Lett. 43, 2933–2936 (2018).

    Article  ADS  Google Scholar 

  31. Stone, J. R. et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett. 121, 063902 (2018).

    Article  ADS  Google Scholar 

  32. Li, Z. et al. Thulium-doped fiber amplifier for optical communications at 2 μm.Opt. Express 21, 9289–9297 (2013).

    Article  ADS  Google Scholar 

  33. Lamb, E. S. et al. Optical-frequency measurements with a Kerr microcomb and photonic-chip supercontinuum. Phys. Rev. Appl. 9, 024030 (2018).

    Article  ADS  Google Scholar 

  34. Jost, J. D. et al. Counting the cycles of light using a self-referenced optical microresonator. Optica 2, 706–711 (2015).

    Article  ADS  Google Scholar 

  35. Brasch, V., Lucas, E., Jost, J. D., Geiselmann, M. & Kippenberg, T. J. Self-referenced photonic chip soliton Kerr frequency comb. Light Sci. Appl. 6, e16202 (2017).

  36. DiDomenico, G., Schilt, S. & Thomann, P. Simple approach to the relation between laser frequency noise and laser line shape. Appl. Opt. 49, 4801–4807 (2010).

    Article  ADS  Google Scholar 

  37. Huszank, R., Csedreki, L., Kertész, Z. & Török, Z. Determination of the density of silicon-nitride thin films by ion-beam analytical techniques (RBS, PIXE, STIM). J. Radioanalyt. Nucl. Chem. 307, 341–346 (2016).

    Article  Google Scholar 

  38. Bai, S., Tang, Z., Huang, Z. & Yu, J. Thermal characterization of Si3N4 thin films using transient thermoreflectance technique. IEEE Trans. Ind. Electr. 56, 3238–3243 (2009).

    Article  Google Scholar 

  39. Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).

    Article  ADS  Google Scholar 

  40. Xue, X. et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt. Express 24, 687–698 (2016).

    Article  ADS  Google Scholar 

  41. Sinclair, L. C. et al. A compact optically coherent fiber frequency comb. Rev. Sci. Instrum. 86, 081301 (2015).

    Article  ADS  Google Scholar 

  42. Kippenberg, T. J., Schliesser, A. & Gorodetsky, M. Phase noise measurement of external cavity diode lasers and implications for optomechanical sideband cooling of ghz mechanical modes. N. J. Phys. 15, 015019 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Srinivasan for fabricating the SiN microresonators, S.-P. Yu for creating the mode simulation in Fig. 1, D. Spencer for experimental assistance, and Srico, Inc. for the use of the periodically poled lithium-niobate waveguide device. This research is supported by the Defense Advanced Research Projects Agency DODOS programme, AFOSR (FA9550-16-1-0016), NRC and NIST.

Author information

Authors and Affiliations

Authors

Contributions

T.E.D. and J.R.S. performed the experiments and analysed the data. T.C.B. assisted in all aspects of the work. S.B.P. contributed to all aspects of the work and supervised the project.

Corresponding author

Correspondence to Scott B. Papp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, and discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drake, T.E., Stone, J.R., Briles, T.C. et al. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photonics 14, 480–485 (2020). https://doi.org/10.1038/s41566-020-0651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0651-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing