By utilizing exciton resonances in atomically thick semiconductors, researchers have now demonstrated the ultimate downscaling of optical lenses and reported on their efficacious electrical tunability.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Topological phase singularities in atomically thin high-refractive-index materials
Nature Communications Open Access 19 April 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Khorasaninejad, M. et al. Science 352, 1190–1194 (2016).
Aieta, F. et al. Nano Lett. 12, 4932–4936 (2012).
Khorasaninejad, M. et al. Nano Lett. 15, 5358–5362 (2015).
Mak, K. F. & Shan, J. Nat. Photon. 10, 216–226 (2016).
Sun, C. et al. Nature 528, 534–538 (2015).
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. Nat. Rev. Mater. 2, 17033 (2017).
van de Groep, J. et al. Nat. Photon. https://doi.org/10.1038/s41566-020-0624-y (2020).
Yang, J. et al. Light Sci. Appl. 5, e16046 (2016).
Zheliuk, O. et al. Nat. Nanotechnol. 14, 1123–1128 (2019).
Back, P., Zeytinoglu, S., Ijaz, A., Kroner, M. & Imamoğlu, A. Phys. Rev. Lett. 120, 037401 (2018).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Krasnok, A. Metalenses go atomically thick and tunable. Nat. Photonics 14, 409–410 (2020). https://doi.org/10.1038/s41566-020-0648-3
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-020-0648-3
This article is cited by
-
Diverse terahertz wavefront manipulations empowered by the spatially interleaved metasurfaces
Science China Information Sciences (2023)
-
Topological phase singularities in atomically thin high-refractive-index materials
Nature Communications (2022)