Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits

Abstract

In integrated photonics, specific wavelengths such as 1,550 nm are preferred due to low-loss transmission and the availability of optical gain in this spectral region. For chip-based photodetectors, two-dimensional materials bear scientifically and technologically relevant properties such as electrostatic tunability and strong light–matter interactions. However, no efficient photodetector in the telecommunication C-band has been realized with two-dimensional transition metal dichalcogenide materials due to their large optical bandgaps. Here we demonstrate a MoTe2-based photodetector featuring a strong photoresponse (responsivity 0.5 A W–1) operating at 1,550 nm in silicon photonics enabled by strain engineering the two-dimensional material. Non-planarized waveguide structures show a bandgap modulation of 0.2 eV, resulting in a large photoresponse in an otherwise photoinactive medium when unstrained. Unlike graphene-based photodetectors that rely on a gapless band structure, this photodetector shows an approximately 100-fold reduction in dark current, enabling an efficient noise-equivalent power of 90 pW Hz0.5. Such a strain-engineered integrated photodetector provides new opportunities for integrated optoelectronic systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: MRR-integrated photodetector.
Fig. 2: Photoresponse of the Au/MoTe2/Au integrated on MRR.
Fig. 3: Mechanism of enhanced photocurrent.
Fig. 4: Dynamic performance.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Jacobsen, R. S. et al. Strained silicon as a new electro-optic material. Nature 441, 199–202 (2006).

    ADS  Google Scholar 

  2. 2.

    Cheng, T.-H. et al. Strain-enhanced photoluminescence from Ge direct transition. Appl. Phys. Lett. 96, 211108 (2010).

    ADS  Google Scholar 

  3. 3.

    Feng, J., Qian, X., Huang, C.-W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 6, 866–872 (2012).

    ADS  Google Scholar 

  4. 4.

    Lee, M. L., Fitzgerald, E. A., Bulsara, M. T., Currie, M. T. & Lochtefeld, A. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97, 11101 (2005).

    ADS  Google Scholar 

  5. 5.

    Yun, W. S., Han, S. W., Hong, S. C., Kim, I. G. & Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX 2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85, 1–5 (2012).

    Google Scholar 

  6. 6.

    He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931–2936 (2013).

    ADS  Google Scholar 

  7. 7.

    Yue, Q. et al. Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys. Lett. A 376, 1166–1170 (2012).

    ADS  Google Scholar 

  8. 8.

    Ghorbani-Asl, M., Borini, S., Kuc, A. & Heine, T. Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 87, 1–6 (2013).

    Google Scholar 

  9. 9.

    Shi, H., Pan, H., Zhang, Y. W. & Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 87, 1–8 (2013).

    Google Scholar 

  10. 10.

    Manzeli, S., Allain, A., Ghadimi, A. & Kis, A. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 15, 5330–5335 (2015).

    ADS  Google Scholar 

  11. 11.

    Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013).

    ADS  Google Scholar 

  12. 12.

    Aslan, O. B. et al. Probing the optical properties and strain-tuning of ultrathin Mo1–xWxTe2. Nano Lett. 18, 2485–2491 (2018).

    ADS  Google Scholar 

  13. 13.

    Eng, P. C., Song, S. & Ping, B. State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength. Nanophotonics 4, 277–302 (2015).

    Google Scholar 

  14. 14.

    Feng, B. et al. All-Si photodetectors with a resonant cavity for near-infrared polarimetric detection. Nanoscale Res. Lett. 14, 39 (2019).

    ADS  Google Scholar 

  15. 15.

    Walden, R. H. A review of recent progress in InP-based optoelectronic integrated circuit receiver front-ends. In GaAs IC Symposium IEEE Gallium Arsenide Integrated Circuit Symposium. 18th Annual Technical Digest 255–257 (IEEE, 1996).

  16. 16.

    Narayana, V. K., Sun, S., Badawy, A.-H., Sorger, V. J. & El-Ghazawi, T. MorphoNoC: exploring the design space of a configurable hybrid NoC using nanophotonics. Microprocess. Microsyst. 50, 113–126 (2017).

    Google Scholar 

  17. 17.

    Liu, K., Sun, S., Majumdar, A. & Sorger, V. J. Fundamental scaling laws in nanophotonics. Sci. Rep. 6, 37419 (2016).

    ADS  Google Scholar 

  18. 18.

    Michel, J., Liu, J. & Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nat. Photon. 4, 527 (2010).

    ADS  Google Scholar 

  19. 19.

    Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express 20, 28594 (2012).

    ADS  Google Scholar 

  20. 20.

    Wang, J. & Lee, S. Ge-photodetectors for Si-based optoelectronic integration. Sensors 11, 696–718 (2011).

    Google Scholar 

  21. 21.

    Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 9, 247–252 (2015).

    Google Scholar 

  22. 22.

    Bie, Y. Q. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124–1129 (2017).

    ADS  Google Scholar 

  23. 23.

    Octon, T. J., Nagareddy, V. K., Russo, S., Craciun, M. F. & Wright, C. D. Fast high-responsivity few-layer MoTe2 photodetectors. Adv. Opt. Mater. 4, 1750–1754 (2016).

    Google Scholar 

  24. 24.

    Youngblood, N., & Li, Mo. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics 6, 1205 (2017).

    Google Scholar 

  25. 25.

    Ma, P. et al. Fast MoTe2 waveguide photodetector with high sensitivity at telecommunication wavelengths. ACS Photonics 5, 1846–1852 (2018).

    Google Scholar 

  26. 26.

    Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photon. 7, 883–887 (2013).

    Google Scholar 

  27. 27.

    Schuler, S. et al. Controlled generation of a p–n junction in a waveguide integrated graphene photodetector. Nano Lett. 16, 7107–7112 (2016).

    ADS  Google Scholar 

  28. 28.

    Island, J. O., Steele, G. A., van der Zant, H. S. J. & Castellanos-Gomez, A. Environmental instability of few-layer black phosphorus. 2D Mater. 2, 11002 (2015).

    Google Scholar 

  29. 29.

    Deng, S., Sumant, A. V. & Berry, V. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22, 14–35 (2018).

    Google Scholar 

  30. 30.

    Johari, P. & Shenoy, V. B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6, 5449–5456 (2012).

    Google Scholar 

  31. 31.

    Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015).

    Google Scholar 

  32. 32.

    Shiue, R.-J. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015).

    ADS  Google Scholar 

  33. 33.

    Hemnani, R. A. et al. Towards a 2D printer: a deterministic cross contamination-free transfer method for atomically layered material. 2D Mater 6, 015006 (2018).

    Google Scholar 

  34. 34.

    Li, H. et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015).

    ADS  Google Scholar 

  35. 35.

    Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

    ADS  Google Scholar 

  36. 36.

    Frisenda, R. et al. Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides, npj 2D Mater. Appl. 1, 10 (2017).

    Google Scholar 

  37. 37.

    Desai, S. B. et al. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592–4597 (2014).

    ADS  Google Scholar 

  38. 38.

    Melitz, W., Shen, J., Kummel, A. C. & Lee, S. Surface science reports kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011).

    ADS  Google Scholar 

  39. 39.

    Sarwat, S. G. et al. Revealing strain-induced effects in ultrathin heterostructures at the nanoscale. Nano Lett. 18, 2467–2474 (2018).

  40. 40.

    Jung, D. Y., Yang, S. Y., Park, H., Shin, W. C., Oh, J. G., Cho, B. J. & Choi, S.-Y. Interface engineering for high performance graphene electronic devices. Nano Converg. 2, 11 (2015).

    Google Scholar 

  41. 41.

    Meng, L. et al. Two-dimensional WS2 lateral heterojunctions by strain modulation. Appl. Phys. Lett. 108, 263104 (2016).

    ADS  Google Scholar 

  42. 42.

    Casalino, M. et al. Vertically illuminated, resonant cavity enhanced, graphene–silicon Schottky photodetectors. ACS Nano 11, 10955–10963 (2017).

    Google Scholar 

  43. 43.

    Huang, L. et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano 13, 913–921 (2019).

    Google Scholar 

  44. 44.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  Google Scholar 

  45. 45.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  Google Scholar 

  46. 46.

    Paier, J. et al. Screened hybrid density functionals applied to solids. J. Chem. Phys. 124, 154709 (2006).

    ADS  Google Scholar 

  47. 47.

    Pack, J. D. & Monkhorst, H. J. “Special points for Brillouin-zone integrations”—a reply. Phys. Rev. B 16, 1748–1749 (1977).

    ADS  Google Scholar 

  48. 48.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS  MATH  Google Scholar 

  49. 49.

    Stillinger, F. H. & Weber, T. A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271 (1985).

    ADS  Google Scholar 

  50. 50.

    Jiang, J.-W. & Zhou, Y.-P. in Handbook of StillingerWeber Potential Parameters for Two-Dimensional Atomic Crystals (InTech, 2017).

  51. 51.

    Ichimura, M. Stillinger–Weber potentials for III–V compound semiconductors and their application to the critical thickness calculation for InAs/GaAs. Phys. Status solidi 153, 431–437 (1996).

    ADS  Google Scholar 

  52. 52.

    Zhou, Y.-P. & Jiang, J.-W. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential. Sci. Rep. 7, 45516 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

V.J.S. is supported by AFOSR (grant no. FA9550-17-1-0377) and ARO (grant no. W911NF-16-2-0194). M.A.S.R.S., B.U. and S.D.S. acknowledge support from the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0018041. S.R.B. acknowledges support from NSF grant nos. DMR-1839175 and CCF-1838435. We acknowledge computational support from the Minnesota Supercomputing Institute (MSI).

Author information

Affiliations

Authors

Contributions

R.M. and V.J.S. initiated the project and conceived the experiments. C.P. and T.X. fabricated the devices. R.M. and M.A.S.R.S. performed the measurements and data analysis. B.U., S.D.S., J.G.A., T.L., M.M. and R. Amin provided modelling and the theoretical analysis. A.F.B. and S.R.B. performed supporting experiments. D.V.T. provided planarized photonic chip. R.M and V.J.S. co-wrote the manuscript, and R. Agarwal provided suggestions throughout the project. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to V. J. Sorger.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, discussions and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maiti, R., Patil, C., Saadi, M.A.S.R. et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photonics (2020). https://doi.org/10.1038/s41566-020-0647-4

Download citation