Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces

Abstract

III–nitride light-emitting diodes (LEDs) are the backbone of ubiquitous lighting and display applications. Imparting directional emission is an essential requirement for many LED implementations. Although optical packaging1, nanopatterning2,3 and surface roughening4 techniques can enhance LED extraction, directing the emitted light requires bulky optical components. Optical metasurfaces provide precise control over transmitted and reflected waveforms, suggesting a new route for directing light emission. However, it is difficult to adapt metasurface concepts for incoherent light emission, due to the lack of a phase-locking incident wave. Here, we demonstrate a metasurface-based design of InGaN/GaN quantum-well structures that generate narrow, unidirectional transmission and emission lobes at arbitrary engineered angles. We further demonstrate 7-fold and 100-fold enhancements of total and air-coupled external quantum efficiencies, respectively. The results present a new strategy for exploiting metasurface functionality in light-emitting devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Metasurface schematics and design.
Fig. 2: Directional metasurface transmission and emission.
Fig. 3: Comparison between calculated and measured metasurface radiation patterns.
Fig. 4: Metasurface polarization and efficiency.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code that supports the plots within this paper and other findings of this study is available from the corresponding author upon reasonable request.

References

  1. 1.

    Steigerwald, D. A. et al. Illumination with solid state lighting technology. IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).

    ADS  Google Scholar 

  2. 2.

    Keller, S. et al. Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN∕GaN multi-quantum wells. J. Appl. Phys. 100, 054314 (2006).

    ADS  Google Scholar 

  3. 3.

    Wierer, J. J., David, A. & Megens, M. M. III–nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photon. 3, 163–169 (2009).

    ADS  Google Scholar 

  4. 4.

    Fujii, T. et al. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett. 84, 855–857 (2004).

    ADS  Google Scholar 

  5. 5.

    Craford, M. G. LEDs for solid state lighting and other emerging applications: status, trends, and challenges. Proc. SPIE 5941, 594101 (2005).

    Google Scholar 

  6. 6.

    Liu, Z., Chong, W. C., Wong, K. M. & Lau, K. M. GaN-based LED micro-displays for wearable applications. Microelectron. Eng. 148, 98–103 (2015).

    Google Scholar 

  7. 7.

    Huang, J.-J., Kuo, H.-C. & Shen, S.-C. Nitride Semiconductor Light-emitting Diodes (LEDs): Materials, Technologies, and Applications (Woodhead Publishing, 2017).

  8. 8.

    Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018).

    ADS  Google Scholar 

  9. 9.

    Hoang, T. B., Akselrod, G. M., Yang, A., Odom, T. W. & Mikkelsen, M. H. Millimeter-scale spatial coherence from a plasmon laser. Nano Lett. 17, 6690–6695 (2017).

    ADS  Google Scholar 

  10. 10.

    Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nat. Photon. 3, 658–661 (2009).

    ADS  Google Scholar 

  11. 11.

    Sakr, E., Dhaka, S. & Bermel, P. Asymmetric angular-selective thermal emission. Proc. SPIE 9743, 97431D (2016).

    ADS  Google Scholar 

  12. 12.

    Inampudi, S., Cheng, J., Salary, M. M. & Mosallaei, H. Unidirectional thermal radiation from a SiC metasurface. J. Opt. Soc. Am. B 35, 39–46 (2018).

    ADS  Google Scholar 

  13. 13.

    Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    ADS  Google Scholar 

  14. 14.

    Kosako, T., Kadoya, Y. & Hofmann, H. F. Directional control of light by a nano-optical Yagi–Uda antenna. Nat. Photon. 4, 312–315 (2010).

    Google Scholar 

  15. 15.

    Ho, J. et al. Highly directive hybrid metal–dielectric Yagi-Uda nanoantennas. ACS Nano 12, 8616–8624 (2018).

    Google Scholar 

  16. 16.

    Muhlschlegel, P. Resonant optical antennas. Science 308, 1607–1609 (2005).

    ADS  Google Scholar 

  17. 17.

    Langguth, L., Schokker, A. H., Guo, K. & Koenderink, A. F. Plasmonic phase-gradient metasurface for spontaneous emission control. Phys. Rev. B 92, 205401 (2015).

    ADS  Google Scholar 

  18. 18.

    Hancu, I. M., Curto, A. G., Castro-López, M., Kuttge, M. & van Hulst, N. F. Multipolar interference for directed light emission. Nano Lett. 14, 166–171 (2013).

    ADS  Google Scholar 

  19. 19.

    Vaskin, A., Kolkowski, R., Koenderink, A. F. & Staude, I. Light-emitting metasurfaces. Nanophotonics 8, 1151–1198 (2019).

    Google Scholar 

  20. 20.

    Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625 (2017).

    ADS  Google Scholar 

  21. 21.

    Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    ADS  Google Scholar 

  22. 22.

    Iyer, P. P., Pendharkar, M. & Schuller, J. A. Electrically reconfigurable metasurfaces using heterojunction resonators. Adv. Opt. Mater. 4, 1582–1588 (2016).

    Google Scholar 

  23. 23.

    Chalabi, H., Alù, A. & Brongersma, M. L. Focused thermal emission from a nanostructured SiC surface. Phys. Rev. B 94, 094307 (2016).

    ADS  Google Scholar 

  24. 24.

    Liu, S. et al. Light-emitting metasurfaces: simultaneous control of spontaneous emission and far-field radiation. Nano Lett. 18, 6906–6914 (2018).

    ADS  Google Scholar 

  25. 25.

    Vaskin, A. et al. Manipulation of magnetic dipole emission from Eu3+ with Mie-resonant dielectric metasurfaces. Nano Lett. 19, 1015–1022 (2019).

    ADS  Google Scholar 

  26. 26.

    Lozano, G., Grzela, G., Verschuuren, M. A., Ramezani, M. & Rivas, J. G. Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices. Nanoscale 6, 9223–9229 (2014).

    ADS  Google Scholar 

  27. 27.

    Li, J., Verellen, N. & Van Dorpe, P. Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk. ACS Photon. 4, 1893–1898 (2017).

    Google Scholar 

  28. 28.

    Staude, I. et al. Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles. ACS Photon. 2, 172–177 (2015).

    Google Scholar 

  29. 29.

    Vaskin, A. et al. Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays. ACS Photon. 5, 1359–1364 (2018).

    Google Scholar 

  30. 30.

    Cotrufo, M., Osorio, C. I. & Koenderink, A. F. Spin-dependent emission from arrays of planar chiral nanoantennas due to lattice and localized plasmon resonances. ACS Nano 10, 3389–3397 (2016).

    Google Scholar 

  31. 31.

    Guo, K., Du, M., Osorio, C. I. & Koenderink, A. F. Broadband light scattering and photoluminescence enhancement from plasmonic Vogel’s golden spirals. Laser Photon. Rev. 11, 1600235 (2017).

    ADS  Google Scholar 

  32. 32.

    Iyer, P. P., Butakov, N. A. & Schuller, J. A. Reconfigurable semiconductor phased-array metasurfaces. ACS Photon. 2, 1077–1084 (2015).

    Google Scholar 

  33. 33.

    Das, T., Iyer, P. P., DeCrescent, R. A. & Schuller, J. A. Beam engineering for selective and enhanced coupling to multipolar resonances. Phys. Rev. B 92, 241110 (2015).

    ADS  Google Scholar 

  34. 34.

    Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    ADS  Google Scholar 

  35. 35.

    Taminiau, T. H., Karaveli, S., van Hulst, N. F. & Zia, R. Quantifying the magnetic nature of light emission. Nat. Commun. 3, 979 (2012).

    ADS  Google Scholar 

  36. 36.

    Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotechnol. 8, 271–276 (2013).

    ADS  Google Scholar 

  37. 37.

    Kurvits, J. A., Jiang, M. & Zia, R. Comparative analysis of imaging configurations and objectives for Fourier microscopy. J. Opt. Soc. Am. A 32, 2082–2092 (2015).

    ADS  Google Scholar 

  38. 38.

    McGroddy, K. et al. Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes. Appl. Phys. Lett. 93, 103502 (2008).

    ADS  Google Scholar 

  39. 39.

    Sell, D., Yang, J., Doshay, S., Yang, R. & Fan, J. A. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 17, 3752–3757 (2017).

    ADS  Google Scholar 

  40. 40.

    Sandfuchs, O., Brunner, R., Pätz, D., Sinzinger, S. & Ruoff, J. Rigorous analysis of shadowing effects in blazed transmission gratings. Opt. Lett. 31, 3638–3640 (2006).

    ADS  Google Scholar 

  41. 41.

    Matioli, E. et al. High-brightness polarized light-emitting diodes. Light Sci. Appl. 1, e22 (2012).

    Google Scholar 

  42. 42.

    Faklis, D. & Morris, G. M. Diffractive optics technology for display applications. In Proc. SPIE 2407, Projection Displays (ed. Wu, M. H.) 57–61 (International Society for Optics and Photonics, 1995).

  43. 43.

    Piao, M.-L. & Kim, N. Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer. Appl. Opt. 53, 2180–2186 (2014).

    ADS  Google Scholar 

  44. 44.

    Zhou, Q., Xu, M. & Wang, H. Internal quantum efficiency improvement of InGaN/GaN multiple quantum well green light-emitting diodes. Opto-Electron. Rev. 24, 1–9 (2016).

    ADS  Google Scholar 

  45. 45.

    Zhuang, Z. et al. Great enhancement in the excitonic recombination and light extraction of highly ordered InGaN/GaN elliptic nanorod arrays on a wafer scale. Nanotechnology 27, 015301 (2016).

    ADS  Google Scholar 

  46. 46.

    Wang, G. T., Li, Q., Wierer, J. J., Koleske, D. D. & Figiel, J. J. Top-down fabrication and characterization of axial and radial III-nitride nanowire LEDs. Phys. Status Solidi 211, 748–751 (2014).

    ADS  Google Scholar 

  47. 47.

    Xing, K., Gong, Y., Bai, J. & Wang, T. InGaN/GaN quantum well structures with greatly enhanced performance on a-plane GaN grown using self-organized nano-masks. Appl. Phys. Lett. 99, 181907 (2011).

    ADS  Google Scholar 

Download references

Acknowledgements

This work—including all efforts by P.P.I., R.A.D., N.A.B. and J.A.S.—was primarily supported by the Office of Naval Research (N00014-19-1-2004). Y.M. acknowledges support from Quantum Materials for Energy Efficient Neuromorphic Computing, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award no. DE-SC0019273. G.L. and C.W. acknowledge support from the National Science Foundation (DMS-1839077) and the Simons Foundation (601954). A.A., S.N. and S.P.D. acknowledge support from the Solid State Lighting and Energy Electronics Center.

Author information

Affiliations

Authors

Contributions

P.P.I. and J.A.S. proposed, conceived and supervised the project. P.P.I., Y.M. and N.A.B. fabricated the devices. P.P.I. performed the numerical electromagnetics simulations and momentum-resolved luminescence measurements. R.A.D. performed momentum-resolved transmission and absorption measurements, and derived and coded the analytical LDOS model. R.A.D. and G.L. performed quantum efficiency measurements. G.L. performed the band structure calculation under the supervision of C.W. A.A. grew the quantum wells under the supervision of S.P.D. and S.N. P.P.I., R.A.D. and J.A.S. analysed the data. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Jon. A. Schuller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Sections 1–7, and Figs. 1.1, 1.2 and 2–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iyer, P.P., DeCrescent, R.A., Mohtashami, Y. et al. Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces. Nat. Photonics 14, 543–548 (2020). https://doi.org/10.1038/s41566-020-0641-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing