Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Harmonic optical tomography of nonlinear structures

Abstract

Second-harmonic generation microscopy is a valuable label-free modality for imaging non-centrosymmetric structures and has important biomedical applications from live-cell imaging to cancer diagnosis. Conventional second-harmonic generation microscopy measures intensity signals that originate from tightly focused laser beams, preventing researchers from solving the scattering inverse problem for second-order nonlinear materials. Here, we present harmonic optical tomography (HOT) as a novel modality for imaging microscopic, nonlinear and inhomogeneous objects. The HOT principle of operation relies on interferometrically measuring the complex harmonic field and using a scattering inverse model to reconstruct the three-dimensional distribution of harmonophores. HOT enables strong axial sectioning via the momentum conservation of spatially and temporally broadband fields. We illustrate the HOT operation with experiments and reconstructions on a beta-barium borate crystal and various biological specimens. Although our results involve second-order nonlinear materials, we show that this approach applies to any coherent nonlinear process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic of HOT and the procedure of complex field retrieval.
Fig. 2: The second-harmonic scattering.
Fig. 3: The normalized transfer function under different NAc values.
Fig. 4: HOT of an inhomogeneous nonlinear crystal.
Fig. 5: HOT of murine skeletal muscle slice.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The MATLAB code used for HOT reconstruction is available from the corresponding authors upon reasonable request.

References

  1. Campagnola, P. J., Wei, M. D., Lewis, A. & Loew, L. M. High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys. J. 77, 3341–3349 (1999).

    Google Scholar 

  2. Campagnola, P. J. & Loew, L. M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356–1360 (2003).

    Google Scholar 

  3. Masters, B. R. & So, P. T. C. Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, 2008).

  4. Ambekar, R., Lau, T. Y., Walsh, M., Bhargava, R. & Toussaint, K. C. Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. Biomed. Opt. Express 3, 2021–2035 (2012).

    Google Scholar 

  5. Boyd, R. W. Nonlinear Optics 3rd edn (Academic Press, 2008).

  6. Zipfel, W. R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl Acad. Sci. USA 100, 7075–7080 (2003).

    ADS  Google Scholar 

  7. Zoumi, A., Yeh, A. & Tromberg, B. J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl Acad. Sci. USA 99, 11014–11019 (2002).

    ADS  Google Scholar 

  8. Zoumi, A., Yeh, A. & Tromberg, B. J. Imaging cells and extracellular matrix—in vivo—by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl Acad. Sci. USA 99, 11014–11019 (2002).

    ADS  Google Scholar 

  9. Vuillemin, N. et al. Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation. Sci Rep. 6, 29863 (2016).

  10. Ducourthial, G. et al. Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging. J. Biophoton. 12, e201800336 (2019).

    Google Scholar 

  11. Campagnola, P. J. et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 82, 493–508 (2002).

    ADS  Google Scholar 

  12. Mohler, W., Millard, A. C. & Campagnola, P. J. Second harmonic generation imaging of endogenous structural proteins. Methods 29, 97–109 (2003).

    Google Scholar 

  13. Chu, S. W. et al. Studies of χ (2)/χ (3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy. Biophys. J. 86, 3914–3922 (2004).

    ADS  Google Scholar 

  14. Dombeck, D. A. et al. Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. Proc. Natl Acad. Sci. USA 100, 7081–7086 (2003).

    ADS  Google Scholar 

  15. Brown, E. et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med. 9, 796–800 (2003).

    Google Scholar 

  16. Ajeti, V. et al. Structural changes in mixed Col I/Col V collagen gels probed by SHG microscopy: implications for probing stromal alterations in human breast cancer. Biomed. Opt. Express 2, 2307–2316 (2011).

    Google Scholar 

  17. Provenzano, P. P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).

  18. Provenzano, P. P. et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6, 11 (2008).

    Google Scholar 

  19. Hunter, M. et al. Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection. Phys. Rev. Lett. 97, 138102 (2006).

    ADS  Google Scholar 

  20. Birk, J. W. et al. Second harmonic generation imaging distinguishes both high-grade dysplasia and cancer from normal colonic mucosa. Digest Dis. Sci. 59, 1529–1534 (2014).

    Google Scholar 

  21. Campagnola, P. Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal. Chem. 83, 3224–3231 (2011).

    Google Scholar 

  22. Tilbury, K. & Campagnola, P. J. Applications of second-harmonic generation imaging microscopy in ovarian and breast cancer. Perspect. Med. Chem. 7, 21–32 (2015).

    Google Scholar 

  23. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1368–1376 (2003).

    Google Scholar 

  24. Mertz, J. & Moreaux, L. Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers. Opt. Commun. 196, 325–330 (2001).

    ADS  Google Scholar 

  25. Ozcan, A., Digonnet, M. & Kino, G. Iterative processing of second-order optical nonlinearity depth profiles. Opt. Express 12, 3367–3376 (2004).

    ADS  Google Scholar 

  26. Ozcan, A., Digonnet, M. J. F. & Kino, G. S. Detailed analysis of inverse fourier transform techniques to uniquely infer second-order nonlinearity profile of thin films. J. Appl. Phys. 97, 013502 (2005).

    ADS  Google Scholar 

  27. Balu, M., Mikami, H., Hou, J., Potma, E. O. & Tromberg, B. J. Rapid mesoscale multiphoton microscopy of human skin. Biomed. Opt. Express 7, 4375–4387 (2016).

    Google Scholar 

  28. Campbell, K. R. et al. 3D second harmonic generation imaging tomography by multi-view excitation. Optica 4, 1171–1179 (2017).

    ADS  Google Scholar 

  29. Pu, Y., Centurion, M. & Psaltis, D. Harmonic holography: a new holographic principle. Appl. Optics 47, A103–A110 (2008).

    ADS  Google Scholar 

  30. Smith, D. R., Winters, D. G. & Bartels, R. A. Submillisecond second harmonic holographic imaging of biological specimens in three dimensions. Proc. Natl Acad. Sci. USA 110, 18391–18396 (2013).

    ADS  Google Scholar 

  31. Goodman, A. J. & Tisdale, W. A. Enhancement of second-order nonlinear-optical signals by optical stimulation. Phys. Rev. Lett. 114, 183902 (2015).

    ADS  Google Scholar 

  32. Shaffer, E., Marquet, P. & Depeursinge, C. Real time, nanometric 3D-tracking of nanoparticles made possible by second harmonic generation digital holographic microscopy. Opt. Express 18, 17392–17403 (2010).

    ADS  Google Scholar 

  33. Couture, C. A. et al. The impact of collagen fibril polarity on second harmonic generation microscopy. Biophys. J. 109, 2501–2510 (2015).

    ADS  Google Scholar 

  34. Winters, D. G., Smith, D. R., Schlup, P. & Bartels, R. A. Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope. Biomed. Opt. Express 3, 2004–2011 (2012).

    Google Scholar 

  35. Reider, G. A., Cernusca, M. & Hofer, M. Coherence artifacts in second harmonic microscopy. Appl. Phys. B 68, 343–347 (1999).

    ADS  Google Scholar 

  36. Pinsard, M. et al. Elimination of imaging artifacts in second harmonic generation microscopy using interferometry. Biomed. Opt. Express 10, 3938–3952 (2019).

    Google Scholar 

  37. Popescu, G. Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).

  38. Hu, C. & Popescu, G. in Label-Free Super-Resolution Microscopy 1–24 (Springer, 2019).

  39. Popescu, G. Principles of Biophotonics: Linear Systems and the Fourier Transform in Optics Vol. 1 (IOP, 2018).

  40. Sung, Y. et al. Optical diffraction tomography for high resolution live cell imaging. Opt. Express 17, 266–277 (2009).

    ADS  Google Scholar 

  41. Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007).

    Google Scholar 

  42. Jin, D., Zhou, R. J., Yaqoob, Z. & So, P. T. C. Tomographic phase microscopy: principles and applications in bioimaging [invited]. J. Opt. Soc. Am. B 34, B64–B77 (2017).

    Google Scholar 

  43. Gokhin, D. S., Dubuc, E. A., Lian, K. Q., Peters, L. L. & Fowler, V. M. Alterations in thin filament length during postnatal skeletal muscle development and aging in mice. Front. Physiol. 5, 375 (2014).

    Google Scholar 

  44. Moo, E. K., Fortuna, R., Sibole, S. C., Abusara, Z. & Herzog, W. In vivo sarcomere lengths and sarcomere elongations are not uniform across an intact muscle. Front. Physiol. 7, 187 (2016).

    Google Scholar 

  45. Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photon. 12, 578–589 (2018).

    ADS  Google Scholar 

  46. Kim, K. et al. Diffraction optical tomography using a quantitative phase imaging unit. Opt. Lett. 39, 6935–6938 (2014).

    ADS  Google Scholar 

  47. Kim, T. et al. White-light diffraction tomography of unlabeled live cells. Nat. Photon. 8, 256–263 (2014).

    ADS  Google Scholar 

  48. Kandel, M. E. et al. Epi-illumination gradient light interference microscopy for imaging opaque structures. Nat. Commun. 10, 4691 (2019).

    ADS  Google Scholar 

  49. Nguyen, T. H., Kandel, M. E., Rubessa, M., Wheeler, M. B. & Popescu, G. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8, 210 (2017).

    ADS  Google Scholar 

  50. Conklin, M. W. et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol 178, 1221–1232 (2011).

    Google Scholar 

  51. Hu, C. et al. Imaging collagen properties in the uterosacral ligaments of women with pelvic organ prolapse using spatial light interference microscopy (SLIM). Front. Phys. 7, 72 (2019).

    Google Scholar 

  52. Majeed, H., Okoro, C., Kajdacsy-Balla, A., Toussaint, K. C. & Popescu, G. Quantifying collagen fiber orientation in breast cancer using quantitative phase imaging. BIOMEDO 22, 046004 (2017).

  53. Kieu, K., Renninger, W. H., Chong, A. & Wise, F. W. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Opt. Lett. 34, 593–595 (2009).

    ADS  Google Scholar 

  54. Domingue, S. R. & Bartels, R. A. Nonlinear fiber amplifier with tunable transform limited pulse duration from a few 100 to sub-100-fs at watt-level powers. Opt. Lett. 39, 359–362 (2014).

    ADS  Google Scholar 

  55. Sidorenko, P., Fu, W. & Wise, F. Nonlinear ultrafast fiber amplifiers beyond the gain-narrowing limit. Optica 6, 1328–1333 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Science Foundation (0939511, 1450962, 1353368) and the National Institutes of Health (R01CA238191, R01GM129709, R21EB025389 and R21MH117786).

Author information

Authors and Affiliations

Authors

Contributions

C.H., V.K. and G.P. developed the theoretical model, with input from R.A.B. and K.C.T. K.W. built the fibre laser system, J.J.F. built the microscope system and collected experimental data. C.H. developed the numerical reconstruction. C.H. and B.C. rendered figures and Supplememtary videos. R.A.B. supervised the experimental work. G.P. supervised the theoretical work. C.H. and G.P. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Randy A. Bartels or Gabriel Popescu.

Ethics declarations

Competing interests

G.P. has financial interest in Phi Optics, a company developing quantitative phase imaging technology for materials and life science applications, which, however, did not sponsor the research. The authors disclosed this invention to the UIUC Office of Technology management.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and discussion.

Supplementary Video 1

A 3D rendering of an inhomogeneous nonlinear crystal.

Supplementary Video 2

A 3D rendering of murine skeletal muscle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Field, J.J., Kelkar, V. et al. Harmonic optical tomography of nonlinear structures. Nat. Photonics 14, 564–569 (2020). https://doi.org/10.1038/s41566-020-0638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0638-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing