Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exceptional polarization purity in antiresonant hollow-core optical fibres


High-performance interferometers, gyroscopes, frequency combs, quantum information experiments and optical clocks rely on the transmission of light beams with the highest possible spatial and polarization purity. Free-space propagation in vacuum unlocks the ultimate performance but becomes impractical at even modest length scales. Glass optical fibres offer a more pragmatic alternative, but degrade polarization purity and suffer from detrimental nonlinear effects. Hollow-core fibres have been heralded for years as the ideal compromise between the two, but achieving high modal purity in both spatial and polarization domains has proved elusive thus far. Here, we show that carefully designed, low-nonlinearity hollow-core antiresonant fibres can transmit a single pair of orthogonal polarization modes with cross-coupling on the scale of 1010 m1; that is, orders of magnitude lower than any other solution. This free-space-like optical guidance can immediately provide a leap in performance for photonics-enabled sensors and instruments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polarization mode coupling at 1,550 nm among solid- and hollow-core fibres.
Fig. 2: Broadband crossed-polarizer measurements in nodeless ARF1.
Fig. 3: Polarization properties of ARF1 over thermal excursion.
Fig. 4: Attenuation and polarization properties of NANF1.

Similar content being viewed by others

Data availability

The data included in this paper can be accessed at Other findings of this study are available from the corresponding author on reasonable request.


  1. Lefèvre, H. C. The Fiber-Optic Gyroscope 2nd edn (Artech House, 2014).

  2. Terrel, M. A., Digonnet, M. J. F. & Fan, S. Resonant fiber optic gyroscope using an air-core fiber. J. Light. Technol. 30, 931–937 (2012).

    Article  ADS  Google Scholar 

  3. Chamoun, J. N. & Digonnet, M. J. F. Noise and bias error due to polarization coupling in a fiber optic gyroscope. J. Light. Technol. 33, 2839–2847 (2015).

    Article  ADS  Google Scholar 

  4. Ma, L.-S., Jungner, P., Ye, J. & Hall, J. L. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett. 19, 1777 (1994).

    Article  ADS  Google Scholar 

  5. Falke, S., Misera, M., Sterr, U. & Lisdat, C. Delivering pulsed and phase stable light to atoms of an optical clock. Appl. Phys. B 107, 301–311 (2012).

    Article  ADS  Google Scholar 

  6. Rosenberg, D. et al. Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007).

  7. Pan, J. W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

  8. Jones, D. E., Kirby, B. T. & Brodsky, M. Tuning quantum channels to maximize polarization entanglement for telecom photon pairs. npj Quantum Inf. 4, 58 (2018).

  9. Larson, A. M. & Yeh, A. T. Delivery of sub-10-fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber. Opt. Express 16, 14723 (2008).

    Article  ADS  Google Scholar 

  10. Zhi, D. et al. Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system. Sci. Rep. 7, 2199 (2017).

  11. Aasi, J. et al. Advanced LIGO. Class. Quantum Gravity 32, 074001 (2015).

    Article  ADS  Google Scholar 

  12. Takada, K., Okamoto, K., Sasaki, Y. & Noda, J. Ultimate limit of polarization cross talk in birefringent polarization-maintaining fibers. J. Opt. Soc. Am. A 3, 1594 (1986).

    Article  ADS  Google Scholar 

  13. Brinkmeyer, E. & Eickhoff, W. Ultimate limit of polarisation holding in single-mode fibres. Electron. Lett. 19, 996–997 (1983).

    Article  ADS  Google Scholar 

  14. Ulrich, R. Polarization stabilization on single-mode fiber. Appl. Phys. Lett. 35, 840–842 (1979).

    Article  ADS  Google Scholar 

  15. Kaminow, I. P. Polarization in optical fibers. IEEE J. Quantum Electron. 17, 15–22 (1981).

    Article  ADS  Google Scholar 

  16. Rashleigh, S. C., Ulrich, R., Burns, W. K. & Moeller, R. P. Polarization holding in birefringent single-mode fibers. Opt. Lett. 7, 40–42 (1982).

    Google Scholar 

  17. Noda, J., Okamoto, K. & Sasaki, Y. Polarization-maintaining fibers and their applications. J. Light. Technol. 4, 1071–1089 (1986).

    Article  ADS  Google Scholar 

  18. Zhang, F. & Lit, J. W. Y. Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers. Appl. Opt. 32, 2213 (1993).

    Article  ADS  Google Scholar 

  19. Wanser, K. H. Fundamental phase noise limit in optical fibres due to temperature fluctuations. Electron. Lett. 28, 53–54 (1992).

    Article  ADS  Google Scholar 

  20. Iwatsuki, K., Hotate, K. & Higashiguchi, M. Kerr effect in an optical passive ring-resonator gyro. J. Light. Technol. 4, 645–651 (1986).

    Article  ADS  Google Scholar 

  21. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    Article  Google Scholar 

  22. Poletti, F. et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum. Nat. Photon. 7, 279–284 (2013).

    Article  ADS  Google Scholar 

  23. Petrovich, M. N., Poletti, F., van Brakel, A. & Richardson, D. J. Robustly single mode hollow core photonic bandgap fiber. Opt. Express 16, 4337–4346 (2008).

    Article  ADS  Google Scholar 

  24. Chen, X. et al. Highly birefringent hollow-core photonic bandgap fiber. Opt. Express 12, 3888–3893 (2004).

    Article  ADS  Google Scholar 

  25. Fini, J. M. et al. Polarization maintaining single-mode low-loss hollow-core fibres. Nat. Commun. 5, 5085 (2014).

    Article  ADS  Google Scholar 

  26. Uebel, P. et al. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes. Opt. Lett. 41, 1961–1964 (2016).

    Article  ADS  Google Scholar 

  27. Hayes, J. R. et al. Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data. Commun. J. Light. Technol. 35, 437–442 (2017).

    Article  ADS  Google Scholar 

  28. Lu, Y., Bao, X., Chen, L., Xie, S. & Pang, M. Distributed birefringence measurement with beat period detection of homodyne Brillouin optical time-domain reflectometry. Opt. Lett. 37, 3936–3938 (2012).

    Google Scholar 

  29. Mousavi, S. A., Sandoghchi, S. R., Richardson, D. J. & Poletti, F. Broadband high birefringence and polarizing hollow core antiresonant fibers. Opt. Express 24, 22943 (2016).

    Article  ADS  Google Scholar 

  30. Stolen, R. H., Ramaswamy, V., Kaiser, P. & Pleibel, W. Linear polarization in birefringent single-mode fibers. Appl. Phys. Lett. 33, 699–701 (1978).

    Article  ADS  Google Scholar 

  31. Monerie, M. & Jeunhomme, L. Polarization mode coupling in long single-mode fibres. Opt. Quantum Electron. 12, 449–461 (1980).

    Article  Google Scholar 

  32. VanWiggeren, G. D. & Roy, R. Transmission of linearly polarized light through a single-mode fiber with random fluctuations of birefringence. Appl. Opt. 38, 3888–3892 (1999).

    Article  Google Scholar 

  33. Debord, B. et al. Ultralow transmission loss in inhibited-coupling guiding hollow fibers. Optica 4, 209–217 (2017).

    Article  Google Scholar 

  34. Poletti, F. Nested antiresonant nodeless hollow core fiber. Opt. Express 22, 23807–23828 (2014).

    Article  ADS  Google Scholar 

  35. Jasion, G. T. et al. Hollow core NANF with 0.28 dB/km attenuation in the C and L bands. In Optical Fiber Communications Conference Postdeadline Papers 2020 Paper Th4B.4 (OSA, 2020).

  36. Marcuse, D. Theory of Dielectric Optical Waveguides (Academic Press, 1974).

  37. Roberts, P. J. et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13, 236–244 (2005).

    Article  ADS  Google Scholar 

  38. Jackle, J. & Kawasaki, K. Intrinsic roughness of glass surfaces. J. Phys. Condens. Matter 7, 4351–4358 (1995).

    Article  ADS  Google Scholar 

  39. Johnson, S. G. et al. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E 65, 066611 (2002).

  40. Rohrer, C. et al. Phase shift induced degradation of polarization caused by bends in inhibited-coupling guiding hollow-core fibers. IEEE Photonics Technol. Lett. 31, 1362–1365 (2019).

    Article  ADS  Google Scholar 

  41. Ouzounov, D. G. et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702–1704 (2003).

    Article  ADS  Google Scholar 

  42. Fokoua, E. N. et al. How to make the propagation time through an optical fiber fully insensitive to temperature variations. Optica 4, 659–668 (2017).

    Article  Google Scholar 

  43. Slavík, R. et al. Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres. Sci. Rep. 5, 15447 (2015).

  44. Gordon, J. P. & Kogelnik, H. PMD fundamentals: polarization mode dispersion in optical fibers. Proc. Natl Acad. Sci. USA 97, 4541–4550 (2000).

    Article  ADS  Google Scholar 

  45. Vincetti, L. & Setti, V. Waveguiding mechanism in tube lattice fibers. Opt. Express 18, 23133 (2010).

    Article  ADS  Google Scholar 

  46. Jasion, G. T. et al. Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization. Opt. Express 27, 20567 (2019).

    Article  ADS  Google Scholar 

  47. Dong, H. et al. Generalized Mueller matrix method for polarization mode dispersion measurement in a system with polarization-dependent loss or gain. Opt. Express 14, 5067–5072 (2006).

    Google Scholar 

  48. Dong, H. et al. Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain. Opt. Commun. 274, 116–123 (2007).

    Article  ADS  Google Scholar 

  49. Yao, X. S., Chen, X. & Liu, T. High accuracy polarization measurements using binary polarization rotators. Opt. Express 18, 6667–6685 (2010).

    Google Scholar 

Download references


This project has received funding from the European Research Council (ERC) through the project Lightpipe (grant agreement no. 682724) and was co-sponsored by Honeywell Aerospace Advanced Technology. We gratefully acknowledge insightful conversations with D. Payne at the University of Southampton and with G. Sanders and W. Williams from Honeywell. E.N.F and G.T.J. acknowledge support from the Royal Academy of Engineering through personal research fellowships.

Author information

Authors and Affiliations



G.T.J. and F.P. designed the fibres. J.R.H. and T.D.B. fabricated the fibres and measured their loss. A.T. designed and constructed the polarization test apparatus and software, and performed all fibre characterizations and data reduction. E.N.F. and S.A.M. developed the polarization modelling framework. F.P. contributed to the genesis of the idea with A.T. and provided overall technical leadership across all aspects of the research. F.P., E.N.F., A.T. and S.A.M. wrote the manuscript.

Corresponding author

Correspondence to F. Poletti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Discussion and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taranta, A., Numkam Fokoua, E., Abokhamis Mousavi, S. et al. Exceptional polarization purity in antiresonant hollow-core optical fibres. Nat. Photonics 14, 504–510 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing