Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Terahertz topological photonics for on-chip communication

Abstract

The realization of integrated, low-cost and efficient solutions for high-speed, on-chip communication requires terahertz-frequency waveguides and has great potential for information and communication technologies, including sixth-generation (6G) wireless communication, terahertz integrated circuits, and interconnects for intrachip and interchip communication. However, conventional approaches to terahertz waveguiding suffer from sensitivity to defects and sharp bends. Here, building on the topological phase of light, we experimentally demonstrate robust terahertz topological valley transport through several sharp bends on the all-silicon chip. The valley kink states are excellent information carriers owing to their robustness, single-mode propagation and linear dispersion. By leveraging such states, we demonstrate error-free communication through a highly twisted domain wall at an unprecedented data transfer rate (exceeding ten gigabits per second) that enables real-time transmission of uncompressed 4K high-definition video (that is, with a horizontal display resolution of approximately 4,000 pixels). Terahertz communication with topological devices opens a route towards terabit-per-second datalinks that could enable artificial intelligence and cloud-based technologies, including autonomous driving, healthcare, precision manufacturing and holographic communication.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: On-chip THz VPC and its bulk band diagram.
Fig. 2: Phase diagram and topological valley kink states at the domain wall.
Fig. 3: Experimental observation of robust topological valley kink states along a twisted domain wall in a large-scale THz photonic chip.
Fig. 4: Terahertz communication based on robust topological valley transport.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Frankel, M. Y., Gupta, S., Valdmanis, J. A. & Mourou, G. A. Terahertz attenuation and dispersion characteristics of coplanar transmission lines. IEEE Trans. Microw. Theory Tech. 39, 910–916 (1991).

    ADS  Google Scholar 

  2. 2.

    Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002).

    ADS  Google Scholar 

  3. 3.

    Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438–2447 (2004).

    ADS  Google Scholar 

  4. 4.

    Harrington, J. A., George, R., Pedersen, P. & Mueller, E. Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation. Opt. Express 12, 5263–5268 (2004).

    ADS  Google Scholar 

  5. 5.

    Wang, K. & Mittleman, D. M. Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004).

    ADS  Google Scholar 

  6. 6.

    Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).

    ADS  Google Scholar 

  7. 7.

    Atakaramians, S., Afshar, S., Monro, T. M. & Abbott, D. Terahertz dielectric waveguides. Adv. Opt. Photon. 5, 169–215 (2013).

    Google Scholar 

  8. 8.

    Mittleman, D. M. Frontiers in terahertz sources and plasmonics. Nat. Photon. 7, 666–669 (2013).

    ADS  Google Scholar 

  9. 9.

    Kakimi, R., Fujita, M., Nagai, M., Ashida, M. & Nagatsuma, T. Capture of a terahertz wave in a photonic-crystal slab. Nat. Photon. 8, 657–663 (2014).

    ADS  Google Scholar 

  10. 10.

    Tsuruda, K., Fujita, M. & Nagatsuma, T. Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab. Opt. Express 23, 31977–31990 (2015).

    ADS  Google Scholar 

  11. 11.

    Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nat. Photon. 10, 371–379 (2016).

    ADS  Google Scholar 

  12. 12.

    Zhang, Q. et al. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nat. Phys. 12, 1005–1011 (2016).

    Google Scholar 

  13. 13.

    Wang, X. et al. Topological-insulator-based terahertz modulator. Sci. Rep. 7, 13486 (2017).

    ADS  Google Scholar 

  14. 14.

    Mittleman, D. M. Twenty years of terahertz imaging. Opt. Express 26, 9417–9431 (2018).

    ADS  Google Scholar 

  15. 15.

    Ma, J. et al. Security and eavesdropping in terahertz wireless links. Nature 563, 89–93 (2018).

    ADS  Google Scholar 

  16. 16.

    Sengupta, K., Nagatsuma, T. & Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 1, 622–635 (2018).

    Google Scholar 

  17. 17.

    Gu, Q. J. THz interconnect: the last centimeter communication. IEEE Commun. Mag. 53, 206–215 (2015).

    Google Scholar 

  18. 18.

    Liang, Y., Yu, H., Zhang, H. C., Yang, C. & Cui, T. J. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS. Sci. Rep. 5, 14853 (2015).

    ADS  Google Scholar 

  19. 19.

    Weissman, N., Jameson, S. & Socher, E. A packaged 106–110 GHz bi-directional 10Gbps 0.11 pJ/bit/cm CMOS transceiver. In IEEE MTT-S International Microwave Symposium 1–4 (IEEE, 2015).

  20. 20.

    Holloway, J. W., Boglione, L., Hancock, T. M. & Han, R. A fully integrated broadband sub-mm wave chip-to-chip interconnect. IEEE Trans. Microw. Theory Tech. 65, 2373–2386 (2017).

    ADS  Google Scholar 

  21. 21.

    Yu, B. et al. Ortho-mode sub-THz interconnect channel for planar chip-to-chip communications. IEEE Trans. Microw. Theory Tech. 66, 1864–1873 (2017).

    ADS  Google Scholar 

  22. 22.

    Ye, Y., Yu, B., Ding, X., Liu, X. & Gu, Q. J. High energy-efficiency high bandwidth-density sub-THz interconnect for the “last-centimeter” chip-to-chip communications. In IEEE MTT-S International Microwave Symposium 805–808 (IEEE, 2017).

  23. 23.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    ADS  Google Scholar 

  24. 24.

    Bahari, B., Tellez-Limon, R. & Kanté, B. Topological terahertz circuits using semiconductors. Appl. Phys. Lett. 109, 143501 (2016).

    ADS  Google Scholar 

  25. 25.

    Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photon. 11, 763–773 (2017).

    ADS  Google Scholar 

  26. 26.

    Takata, K. & Notomi, M. Photonic topological insulating phase induced solely by gain and loss. Phys. Rev. Lett. 121, 213902 (2018).

    ADS  Google Scholar 

  27. 27.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    ADS  MathSciNet  Google Scholar 

  28. 28.

    Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    ADS  Google Scholar 

  29. 29.

    Chen, W.-J. et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nat. Commun. 5, 5782 (2014).

    ADS  Google Scholar 

  30. 30.

    Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    ADS  Google Scholar 

  31. 31.

    Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016).

    ADS  Google Scholar 

  32. 32.

    Yves, S. et al. Crystalline metamaterials for topological properties at subwavelength scales. Nat. Commun. 8, 16023 (2017).

    ADS  Google Scholar 

  33. 33.

    Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 18, 025012 (2016).

    ADS  Google Scholar 

  34. 34.

    Wu, X. et al. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nat. Commun. 8, 1304 (2017).

    ADS  Google Scholar 

  35. 35.

    Dong, J. W., Chen, X. D., Zhu, H., Wang, Y. & Zhang, X. Valley photonic crystals for control of spin and topology. Nat. Mater. 16, 298–302 (2017).

    ADS  Google Scholar 

  36. 36.

    Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140–144 (2018).

    Google Scholar 

  37. 37.

    Noh, J., Huang, S., Chen, K. P. & Rechtsman, M. C. Observation of photonic topological valley Hall edge states. Phys. Rev. Lett. 120, 063902 (2018).

    ADS  Google Scholar 

  38. 38.

    Shalaev, M. I., Walasik, W., Tsukernik, A., Xu, Y. & Litchinitser, N. M. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019).

    ADS  Google Scholar 

  39. 39.

    He, X.-T. et al. A silicon-on-insulator slab for topological valley transport. Nat. Commun. 10, 872 (2019).

    ADS  Google Scholar 

  40. 40.

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS  Google Scholar 

  41. 41.

    Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  42. 42.

    Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).

    ADS  Google Scholar 

  43. 43.

    Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    ADS  Google Scholar 

  44. 44.

    Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Google Scholar 

  45. 45.

    Ota, Y., Katsumi, R., Watanabe, K., Iwamoto, S. & Arakawa, Y. Topological photonic crystal nanocavity laser. Commun. Phys. 1, 86 (2018).

    Google Scholar 

  46. 46.

    Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Google Scholar 

  47. 47.

    Yang, Y. et al. Realization of a three-dimensional photonic topological insulator. Nature 565, 622–626 (2019).

    ADS  Google Scholar 

  48. 48.

    Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  Google Scholar 

  49. 49.

    Barik, S., Miyake, H., DeGottardi, W., Waks, E. & Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. New J. Phys. 18, 113013 (2016).

    ADS  Google Scholar 

  50. 50.

    Lu, J. et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2017).

    Google Scholar 

  51. 51.

    Knight, J., Birks, T., Russell, P. S. J. & Atkin, D. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996).

    ADS  Google Scholar 

  52. 52.

    Barik, S. & Hafezi, M. Robust and compact waveguides. Nat. Nanotechnol. 14, 8–9 (2019).

    ADS  Google Scholar 

  53. 53.

    Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2013).

    ADS  Google Scholar 

  54. 54.

    Zhang, Z. et al. Directional acoustic antennas based on valley‐Hall topological insulators. Adv. Mater. 30, 1803229 (2018).

    Google Scholar 

  55. 55.

    Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  56. 56.

    Noh, J. et al. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys. 13, 611–617 (2017).

    Google Scholar 

  57. 57.

    Yang, B. et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science 359, 1013–1016 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  58. 58.

    Jackiw, R. & Rebbi, C. Solitons with fermion number 1/2. Phys. Rev. D 13, 3398 (1976).

    ADS  MathSciNet  Google Scholar 

  59. 59.

    Nishida, Y. et al. Terahertz coherent receiver using a single resonant tunnelling diode. Sci. Rep. 9, 18125 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Z. Xu at Zhejiang University for discussions, and J. Kim and Y. Nishida at Rohm Co. Ltd. for their help with experiments. Y. Yang, P.P., B.Z. and R.S. acknowledge research funding support from the Singapore Ministry of Education (grant numbers MOE2017-T2-1-110, MOE2018-T2-1-022(S) and MOE2016-T3-1-006(S)) and the National Research Foundation (NRF), Singapore and Agence Nationale de la Recherche (ANR), France (grant number NRF2016-NRF-ANR004). Work at Osaka University is supported in part by the Core Research for Evolutional Science and Technology (CREST) programme of the Japan Science and Technology Agency (grant number JPMJCR1534), KAKENHI, Japan (grant number 17H01764).

Author information

Affiliations

Authors

Contributions

Y. Yang created the design, performed theoretical analysis and simulations, and helped to write the manuscript. Y. Yamagami performed simulations, experiments and data analysis. X.Y. helped with the design and performed the experiments. P.P. helped with the experiment design and simulations. J.W. helped with the communication experiment and data analysis. B.Z. provided input on topological protection. M.F. planned and co-led the project, performed the data analysis, and helped to write the manuscript. T.N. guided the project and communication experiments. R.S. planned and led the project and helped to write the manuscript. All authors contributed to the manuscript.

Corresponding authors

Correspondence to Masayuki Fujita or Ranjan Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, refs. 1–20 and Table 1.

Supplementary Video 1

Video data transmission through topological waveguide.

Supplementary Video 2

Wireless data transmission through topological device.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yamagami, Y., Yu, X. et al. Terahertz topological photonics for on-chip communication. Nat. Photonics 14, 446–451 (2020). https://doi.org/10.1038/s41566-020-0618-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing