Hybrid integrated quantum photonic circuits

Abstract

Recent developments in chip-based photonic quantum circuits have radically impacted quantum information processing. However, it is challenging for monolithic photonic platforms to meet the stringent demands of most quantum applications. Hybrid platforms combining different photonic technologies in a single functional unit have great potential to overcome the limitations of monolithic photonic circuits. Our Review summarizes the progress of hybrid quantum photonics integration, discusses important design considerations, including optical connectivity and operation conditions, and highlights several successful realizations of key physical resources for building a quantum teleporter. We conclude by discussing the roadmap for realizing future advanced large-scale hybrid devices, beyond the solid-state platform, which hold great potential for quantum information applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Design considerations of hybrid quantum photonic circuits.
Fig. 2: Hybrid quantum photonic integration approaches.
Fig. 3: Hybrid integration of key quantum photonic resources.
Fig. 4: Advanced hybrid systems.
Fig. 5: Beyond hybrid integration of monolithic resources.

Change history

  • 17 April 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. https://doi.org/10.1038/s41566-019-0532-1 (2019).

  2. 2.

    Lim, A. E. et al. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).

  3. 3.

    Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

  4. 4.

    Guha, B., Cardenas, J. & Lipson, M. Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21, 26557–26563 (2013).

  5. 5.

    Schwartz, M. et al. Fully on-chip single-photon Hanbury–Brown and Twiss experiment on a monolithic semiconductor–superconductor platform. Nano Lett. 18, 6892–6897 (2018).

  6. 6.

    Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

  7. 7.

    Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012).

  8. 8.

    Metcalf, B. J. et al. Quantum teleportation on a photonic chip. Nat. Photon. 8, 770–774 (2014).

  9. 9.

    Simon, C. et al. Quantum memories. Eur. Phys. J. D 58, 1–22 (2010).

  10. 10.

    Singh, A. et al. Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica 6, 563–569 (2019).

  11. 11.

    Javadi, A. et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015).

  12. 12.

    Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

  13. 13.

    Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

  14. 14.

    Lund, A. P., Bremner, M. J. & Ralph, T. C. Quantum sampling problems, BosonSampling and quantum supremacy. npj Quantum Inf. 3, 15 (2017).

  15. 15.

    Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

  16. 16.

    Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).

  17. 17.

    Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

  18. 18.

    Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

  19. 19.

    Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889 (2017).

  20. 20.

    Schnauber, P. et al. Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits. Nano Lett. 19, 7164–7172 (2019).

  21. 21.

    Elshaari, A. W. et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat. Commun. 8, 379 (2017).

  22. 22.

    Zadeh, I. E. et al. Deterministic integration of single photon sources in silicon based photonic circuits. Nano Lett. 16, 2289–2294 (2016).

  23. 23.

    Elshaari, A. W. et al. Strain-tunable quantum integrated photonics. Nano Lett. 18, 7969–7976 (2018).

  24. 24.

    Aghaeimeibodi, S. et al. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett. 113, 221102 (2018).

  25. 25.

    Kim, J.-H. et al. Hybrid Integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett. 17, 7394–7400 (2017).

  26. 26.

    Khasminskaya, S. et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photon. 10, 727–732 (2016).

  27. 27.

    Mouradian, S. L. et al. Scalable integration of long-lived quantum memories into a photonic circuit. Phys. Rev. X 5, 031009 (2015).

  28. 28.

    Murray, E. et al. Quantum photonics hybrid integration platform. Appl. Phys. Lett. 107, 171108 (2015).

  29. 29.

    Lombardi, P. et al. Photostable molecules on chip: integrated sources of nonclassical light. ACS Photon. 5, 126–132 (2018).

  30. 30.

    Türschmann, P. et al. Chip-based all-optical control of single molecules coherently coupled to a nanoguide. Nano Lett. 17, 4941–4945 (2017).

  31. 31.

    Osada, A. et al. Strongly coupled single-quantum-dot–cavity system integrated on a CMOS-processed silicon photonic chip. Phys. Rev. Appl. 11, 024071 (2019).

  32. 32.

    Katsumi, R., Ota, Y., Kakuda, M., Iwamoto, S. & Arakawa, Y. Transfer-printed single-photon sources coupled to wire waveguides. Optica 5, 691–694 (2018).

  33. 33.

    Prtljaga, N. et al. On-chip interference of single photons from an embedded quantum dot and an external laser. Appl. Phys. Lett. 108, 251101 (2016).

  34. 34.

    Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012).

  35. 35.

    Elshaari, A. W., Zadeh, I. E., Jöns, K. D. & Zwiller, V. Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits. IEEE Photon. J. 8, 1–9 (2016).

  36. 36.

    Gehl, M. et al. Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures. Optica 4, 374–382 (2017).

  37. 37.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

  38. 38.

    Singaravelu, P. K. J. et al. Low-loss, compact, spot-size-converter based vertical couplers for photonic integrated circuits. J. Phys. D 52, 214001 (2019).

  39. 39.

    Sodagar, M., Pourabolghasem, R., Eftekhar, A. A. & Adibi, A. High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO2/SiN platform for 3D integration of optical functionalities. Opt. Express 22, 16767–16777 (2014).

  40. 40.

    Dietrich, P. I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photon. 12, 241–247 (2018).

  41. 41.

    Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).

  42. 42.

    Gissibl, T., Thiele, S., Herkommer, A. & Giessen, H. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun. 7, 11763 (2016).

  43. 43.

    Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

  44. 44.

    Lindenmann, N. et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express 20, 17667–17677 (2012).

  45. 45.

    Jimenez Gordillo, O. A. et al. Plug-and-play fiber to waveguide connector. Opt. Express 27, 20305–20310 (2019).

  46. 46.

    Zimmermann, L., Preve, G. B., Tekin, T., Rosin, T. & Landles, K. Packaging and assembly for integrated photonics — a review of the ePIXpack photonics packaging platform. IEEE J. Sel. Top. Quantum Electron. 17, 645–651 (2011).

  47. 47.

    Molesky, S. et al. Inverse design in nanophotonics. Nat. Photon. 12, 659–670 (2018).

  48. 48.

    Dory, C. et al. Inverse-designed diamond photonics. Nat. Commun. 10, 3309 (2019).

  49. 49.

    Yang, K. Y. et al. Inverse-designed photonic circuits for fully passive, bias-free Kerr-based nonreciprocal transmission and routing. Preprint at https://arxiv.org/abs/1905.04818 (2019).

  50. 50.

    Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photon. https://doi.org/10.1038/s41566-019-0556-6 (2019).

  51. 51.

    Komljenovic, T. et al. Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol. 34, 20–35 (2016).

  52. 52.

    Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010).

  53. 53.

    Gould, M., Schmidgall, E. R., Dadgostar, S., Hatami, F. & Fu, K.-M. C. Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated GaP-on-diamond platform. Phys. Rev. Appl. 6, 011001 (2016).

  54. 54.

    Peyskens, F., Chakraborty, C., Muneeb, M., Van Thourhout, D. & Englund, D. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).

  55. 55.

    Tonndorf, P. et al. On-chip waveguide coupling of a layered semiconductor single-photon source. Nano Lett. 17, 5446–5451 (2017).

  56. 56.

    Schell, A. W. et al. A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices. Rev. Sci. Instrum. 82, 073709 (2011).

  57. 57.

    Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).

  58. 58.

    Guo, X. et al. Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6, e16249 (2017).

  59. 59.

    Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014).

  60. 60.

    Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

  61. 61.

    Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

  62. 62.

    Castelletto, S. et al. A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151–156 (2013).

  63. 63.

    Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

  64. 64.

    Högele, A., Galland, C., Winger, M. & Imamoğlu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

  65. 65.

    Lounis, B. & Moerner, W. E. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

  66. 66.

    Barros, H. G. et al. Deterministic single-photon source from a single ion. New J. Phys. 11, 103004 (2009).

  67. 67.

    He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

  68. 68.

    Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).

  69. 69.

    Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

  70. 70.

    Liu, F. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018).

  71. 71.

    Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).

  72. 72.

    Kim, S. et al. Integrated on chip platform with quantum emitters in layered materials. Adv. Opt. Mater. 7, 1901132 (2019).

  73. 73.

    Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Preprint at https://arxiv.org/abs/1911.12756 (2019).

  74. 74.

    Mendoza, G. J. et al. Active temporal and spatial multiplexing of photons. Optica 3, 127–132 (2016).

  75. 75.

    Xiong, C. et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 14, 095014 (2012).

  76. 76.

    Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

  77. 77.

    Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

  78. 78.

    He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

  79. 79.

    Ellis, D. J. P. et al. Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit. Appl. Phys. Lett. 112, 211104 (2018).

  80. 80.

    Martinez, N. J. D. et al. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode. Opt. Express 25, 16130–16139 (2017).

  81. 81.

    Holzman, I. & Ivry, Y. Superconducting nanowires for single-photon detection: progress, challenges, and opportunities. Adv. Quantum Technol. 2, 1800058 (2019).

  82. 82.

    Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

  83. 83.

    Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

  84. 84.

    Zaske, S. et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).

  85. 85.

    Vergyris, P. et al. On-chip generation of heralded photon-number states. Sci. Rep. 6, 35975 (2016).

  86. 86.

    Wan, N. H. et al. Large-scale integration of near-indistinguishable artificial atoms in hybrid photonic circuits. Preprint at https://arxiv.org/abs/1911.05265 (2019).

  87. 87.

    Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

  88. 88.

    Kaneda, F. & Kwiat, P. G. High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5, eaaw8586 (2019).

  89. 89.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

  90. 90.

    Kaczmarek, K. T. et al. High-speed noise-free optical quantum memory. Phys. Rev. A 97, 042316 (2018).

  91. 91.

    Stern, L., Desiatov, B., Goykhman, I. & Levy, U. Nanoscale light–matter interactions in atomic cladding waveguides. Nat. Commun. 4, 1548 (2013).

  92. 92.

    Bajcsy, M. et al. Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 102, 203902 (2009).

  93. 93.

    Silverstone, J. W., Bonneau, D., O’Brien, J. L. & Thompson, M. G. Silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).

  94. 94.

    Bonneau, D., Silverstone, J. W. & Thompson, M. G. in Silicon Photonics III: Systems and Applications (eds Pavesi, L. & Lockwood, D. J.) 41–82 (Springer, 2016).

  95. 95.

    Feng, L.-T., Guo, G.-C. & Ren, X.-F. Progress on integrated quantum photonic sources with silicon. Adv. Quantum Technol. 3, 1900058 (2020).

  96. 96.

    Blumenthal, D. J., Heideman, R., Geuzebroek, D., Leinse, A. & Roeloffzen, C. Silicon nitride in silicon photonics. Proc. IEEE 106, 2209–2231 (2018).

  97. 97.

    Boes, A., Corcoran, B., Chang, L., Bowers, J. & Mitchell, A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev. 12, 1700256 (2018).

  98. 98.

    Alibart, O. et al. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J. Opt. 18, 104001 (2016).

  99. 99.

    Lu, T.-J. et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. Opt. Express 26, 11147–11160 (2018).

  100. 100.

    Dietrich, C. P., Fiore, A., Thompson, M. G., Kamp, M. & Höfling, S. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Laser Photon. Rev. 10, 870–894 (2016).

  101. 101.

    Lenzini, F., Gruhler, N., Walter, N. & Pernice, W. H. P. Diamond as a platform for integrated quantum photonics. Adv. Quantum Technol. 1, 1800061 (2018).

  102. 102.

    Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

  103. 103.

    Siampour, H. et al. Unidirectional single-photon emission from germanium-vacancy zero-phonon lines: deterministic emitter-waveguide interfacing at plasmonic hot spots. Preprint at https://arxiv.org/abs/1903.05446 (2019).

  104. 104.

    Kewes, G. et al. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures. Sci. Rep. 6, 28877 (2016).

Download references

Acknowledgements

A.W.E. acknowledges support from the Swedish Research Council (Vetenskapsrådet) Starting Grant (ref: 2016-03905) and the ATTRACT project funded by the EC under Grant Agreement 777222. O.B. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer 182087777 - SFB 951 within project B2 and B18. W.P. acknowledges support of ERC grant CoG 724707. V.Z. acknowledges support of the ATTRACT project funded by the EC under Grant Agreement 777222, funding from the Knut and Alice Wallenberg Foundation Grant “Quantum Sensors” and support from the Swedish Research Council (VR) through the VR Grant for International Recruitment of Leading Researchers (ref. 2013-7152) and Research Environment Grant (ref. 2016-06122).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali W. Elshaari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elshaari, A.W., Pernice, W., Srinivasan, K. et al. Hybrid integrated quantum photonic circuits. Nat. Photonics 14, 285–298 (2020). https://doi.org/10.1038/s41566-020-0609-x

Download citation