Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hybrid integrated quantum photonic circuits

An Author Correction to this article was published on 17 April 2020

This article has been updated

Abstract

Recent developments in chip-based photonic quantum circuits have radically impacted quantum information processing. However, it is challenging for monolithic photonic platforms to meet the stringent demands of most quantum applications. Hybrid platforms combining different photonic technologies in a single functional unit have great potential to overcome the limitations of monolithic photonic circuits. Our Review summarizes the progress of hybrid quantum photonics integration, discusses important design considerations, including optical connectivity and operation conditions, and highlights several successful realizations of key physical resources for building a quantum teleporter. We conclude by discussing the roadmap for realizing future advanced large-scale hybrid devices, beyond the solid-state platform, which hold great potential for quantum information applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design considerations of hybrid quantum photonic circuits.
Fig. 2: Hybrid quantum photonic integration approaches.
Fig. 3: Hybrid integration of key quantum photonic resources.
Fig. 4: Advanced hybrid systems.
Fig. 5: Beyond hybrid integration of monolithic resources.

Similar content being viewed by others

Change history

References

  1. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. https://doi.org/10.1038/s41566-019-0532-1 (2019).

  2. Lim, A. E. et al. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).

    ADS  Google Scholar 

  3. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    ADS  Google Scholar 

  4. Guha, B., Cardenas, J. & Lipson, M. Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21, 26557–26563 (2013).

    ADS  Google Scholar 

  5. Schwartz, M. et al. Fully on-chip single-photon Hanbury–Brown and Twiss experiment on a monolithic semiconductor–superconductor platform. Nano Lett. 18, 6892–6897 (2018).

    ADS  Google Scholar 

  6. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    ADS  Google Scholar 

  7. Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012).

    ADS  Google Scholar 

  8. Metcalf, B. J. et al. Quantum teleportation on a photonic chip. Nat. Photon. 8, 770–774 (2014).

    ADS  Google Scholar 

  9. Simon, C. et al. Quantum memories. Eur. Phys. J. D 58, 1–22 (2010).

    ADS  Google Scholar 

  10. Singh, A. et al. Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica 6, 563–569 (2019).

    ADS  Google Scholar 

  11. Javadi, A. et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015).

    ADS  Google Scholar 

  12. Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

    ADS  Google Scholar 

  13. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  14. Lund, A. P., Bremner, M. J. & Ralph, T. C. Quantum sampling problems, BosonSampling and quantum supremacy. npj Quantum Inf. 3, 15 (2017).

    ADS  Google Scholar 

  15. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    ADS  Google Scholar 

  16. Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).

    ADS  Google Scholar 

  17. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    ADS  Google Scholar 

  18. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    ADS  Google Scholar 

  19. Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889 (2017).

    ADS  Google Scholar 

  20. Schnauber, P. et al. Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits. Nano Lett. 19, 7164–7172 (2019).

    ADS  Google Scholar 

  21. Elshaari, A. W. et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat. Commun. 8, 379 (2017).

    ADS  Google Scholar 

  22. Zadeh, I. E. et al. Deterministic integration of single photon sources in silicon based photonic circuits. Nano Lett. 16, 2289–2294 (2016).

    ADS  Google Scholar 

  23. Elshaari, A. W. et al. Strain-tunable quantum integrated photonics. Nano Lett. 18, 7969–7976 (2018).

    ADS  Google Scholar 

  24. Aghaeimeibodi, S. et al. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett. 113, 221102 (2018).

    ADS  Google Scholar 

  25. Kim, J.-H. et al. Hybrid Integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett. 17, 7394–7400 (2017).

    ADS  Google Scholar 

  26. Khasminskaya, S. et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photon. 10, 727–732 (2016).

    ADS  Google Scholar 

  27. Mouradian, S. L. et al. Scalable integration of long-lived quantum memories into a photonic circuit. Phys. Rev. X 5, 031009 (2015).

    Google Scholar 

  28. Murray, E. et al. Quantum photonics hybrid integration platform. Appl. Phys. Lett. 107, 171108 (2015).

    ADS  Google Scholar 

  29. Lombardi, P. et al. Photostable molecules on chip: integrated sources of nonclassical light. ACS Photon. 5, 126–132 (2018).

    Google Scholar 

  30. Türschmann, P. et al. Chip-based all-optical control of single molecules coherently coupled to a nanoguide. Nano Lett. 17, 4941–4945 (2017).

    ADS  Google Scholar 

  31. Osada, A. et al. Strongly coupled single-quantum-dot–cavity system integrated on a CMOS-processed silicon photonic chip. Phys. Rev. Appl. 11, 024071 (2019).

    ADS  Google Scholar 

  32. Katsumi, R., Ota, Y., Kakuda, M., Iwamoto, S. & Arakawa, Y. Transfer-printed single-photon sources coupled to wire waveguides. Optica 5, 691–694 (2018).

    ADS  Google Scholar 

  33. Prtljaga, N. et al. On-chip interference of single photons from an embedded quantum dot and an external laser. Appl. Phys. Lett. 108, 251101 (2016).

    ADS  Google Scholar 

  34. Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012).

    ADS  Google Scholar 

  35. Elshaari, A. W., Zadeh, I. E., Jöns, K. D. & Zwiller, V. Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits. IEEE Photon. J. 8, 1–9 (2016).

    Google Scholar 

  36. Gehl, M. et al. Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures. Optica 4, 374–382 (2017).

    ADS  Google Scholar 

  37. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Google Scholar 

  38. Singaravelu, P. K. J. et al. Low-loss, compact, spot-size-converter based vertical couplers for photonic integrated circuits. J. Phys. D 52, 214001 (2019).

    ADS  Google Scholar 

  39. Sodagar, M., Pourabolghasem, R., Eftekhar, A. A. & Adibi, A. High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO2/SiN platform for 3D integration of optical functionalities. Opt. Express 22, 16767–16777 (2014).

    ADS  Google Scholar 

  40. Dietrich, P. I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photon. 12, 241–247 (2018).

    ADS  Google Scholar 

  41. Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).

    ADS  Google Scholar 

  42. Gissibl, T., Thiele, S., Herkommer, A. & Giessen, H. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun. 7, 11763 (2016).

    ADS  Google Scholar 

  43. Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  44. Lindenmann, N. et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express 20, 17667–17677 (2012).

    ADS  Google Scholar 

  45. Jimenez Gordillo, O. A. et al. Plug-and-play fiber to waveguide connector. Opt. Express 27, 20305–20310 (2019).

    ADS  Google Scholar 

  46. Zimmermann, L., Preve, G. B., Tekin, T., Rosin, T. & Landles, K. Packaging and assembly for integrated photonics — a review of the ePIXpack photonics packaging platform. IEEE J. Sel. Top. Quantum Electron. 17, 645–651 (2011).

    ADS  Google Scholar 

  47. Molesky, S. et al. Inverse design in nanophotonics. Nat. Photon. 12, 659–670 (2018).

    ADS  Google Scholar 

  48. Dory, C. et al. Inverse-designed diamond photonics. Nat. Commun. 10, 3309 (2019).

    ADS  Google Scholar 

  49. Yang, K. Y. et al. Inverse-designed photonic circuits for fully passive, bias-free Kerr-based nonreciprocal transmission and routing. Preprint at https://arxiv.org/abs/1905.04818 (2019).

  50. Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photon. https://doi.org/10.1038/s41566-019-0556-6 (2019).

  51. Komljenovic, T. et al. Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol. 34, 20–35 (2016).

    ADS  Google Scholar 

  52. Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010).

    ADS  Google Scholar 

  53. Gould, M., Schmidgall, E. R., Dadgostar, S., Hatami, F. & Fu, K.-M. C. Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated GaP-on-diamond platform. Phys. Rev. Appl. 6, 011001 (2016).

    ADS  Google Scholar 

  54. Peyskens, F., Chakraborty, C., Muneeb, M., Van Thourhout, D. & Englund, D. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).

    ADS  Google Scholar 

  55. Tonndorf, P. et al. On-chip waveguide coupling of a layered semiconductor single-photon source. Nano Lett. 17, 5446–5451 (2017).

    ADS  Google Scholar 

  56. Schell, A. W. et al. A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices. Rev. Sci. Instrum. 82, 073709 (2011).

    ADS  Google Scholar 

  57. Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).

    ADS  Google Scholar 

  58. Guo, X. et al. Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6, e16249 (2017).

    Google Scholar 

  59. Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014).

    ADS  Google Scholar 

  60. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

    ADS  Google Scholar 

  61. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    ADS  Google Scholar 

  62. Castelletto, S. et al. A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151–156 (2013).

    ADS  Google Scholar 

  63. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    ADS  Google Scholar 

  64. Högele, A., Galland, C., Winger, M. & Imamoğlu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

    ADS  Google Scholar 

  65. Lounis, B. & Moerner, W. E. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

    ADS  Google Scholar 

  66. Barros, H. G. et al. Deterministic single-photon source from a single ion. New J. Phys. 11, 103004 (2009).

    ADS  Google Scholar 

  67. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    ADS  Google Scholar 

  68. Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).

    ADS  Google Scholar 

  69. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    ADS  Google Scholar 

  70. Liu, F. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018).

    ADS  Google Scholar 

  71. Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).

    ADS  Google Scholar 

  72. Kim, S. et al. Integrated on chip platform with quantum emitters in layered materials. Adv. Opt. Mater. 7, 1901132 (2019).

    Google Scholar 

  73. Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Preprint at https://arxiv.org/abs/1911.12756 (2019).

  74. Mendoza, G. J. et al. Active temporal and spatial multiplexing of photons. Optica 3, 127–132 (2016).

    ADS  Google Scholar 

  75. Xiong, C. et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 14, 095014 (2012).

    ADS  Google Scholar 

  76. Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    ADS  Google Scholar 

  77. Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

    ADS  Google Scholar 

  78. He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

    ADS  Google Scholar 

  79. Ellis, D. J. P. et al. Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit. Appl. Phys. Lett. 112, 211104 (2018).

    ADS  Google Scholar 

  80. Martinez, N. J. D. et al. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode. Opt. Express 25, 16130–16139 (2017).

    ADS  Google Scholar 

  81. Holzman, I. & Ivry, Y. Superconducting nanowires for single-photon detection: progress, challenges, and opportunities. Adv. Quantum Technol. 2, 1800058 (2019).

    Google Scholar 

  82. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    ADS  Google Scholar 

  83. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    ADS  Google Scholar 

  84. Zaske, S. et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).

    ADS  Google Scholar 

  85. Vergyris, P. et al. On-chip generation of heralded photon-number states. Sci. Rep. 6, 35975 (2016).

    ADS  Google Scholar 

  86. Wan, N. H. et al. Large-scale integration of near-indistinguishable artificial atoms in hybrid photonic circuits. Preprint at https://arxiv.org/abs/1911.05265 (2019).

  87. Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

    ADS  Google Scholar 

  88. Kaneda, F. & Kwiat, P. G. High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5, eaaw8586 (2019).

    ADS  Google Scholar 

  89. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS  Google Scholar 

  90. Kaczmarek, K. T. et al. High-speed noise-free optical quantum memory. Phys. Rev. A 97, 042316 (2018).

    ADS  Google Scholar 

  91. Stern, L., Desiatov, B., Goykhman, I. & Levy, U. Nanoscale light–matter interactions in atomic cladding waveguides. Nat. Commun. 4, 1548 (2013).

    ADS  Google Scholar 

  92. Bajcsy, M. et al. Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 102, 203902 (2009).

    ADS  Google Scholar 

  93. Silverstone, J. W., Bonneau, D., O’Brien, J. L. & Thompson, M. G. Silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).

    ADS  Google Scholar 

  94. Bonneau, D., Silverstone, J. W. & Thompson, M. G. in Silicon Photonics III: Systems and Applications (eds Pavesi, L. & Lockwood, D. J.) 41–82 (Springer, 2016).

  95. Feng, L.-T., Guo, G.-C. & Ren, X.-F. Progress on integrated quantum photonic sources with silicon. Adv. Quantum Technol. 3, 1900058 (2020).

    Google Scholar 

  96. Blumenthal, D. J., Heideman, R., Geuzebroek, D., Leinse, A. & Roeloffzen, C. Silicon nitride in silicon photonics. Proc. IEEE 106, 2209–2231 (2018).

    Google Scholar 

  97. Boes, A., Corcoran, B., Chang, L., Bowers, J. & Mitchell, A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev. 12, 1700256 (2018).

    ADS  Google Scholar 

  98. Alibart, O. et al. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J. Opt. 18, 104001 (2016).

    ADS  Google Scholar 

  99. Lu, T.-J. et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. Opt. Express 26, 11147–11160 (2018).

    ADS  Google Scholar 

  100. Dietrich, C. P., Fiore, A., Thompson, M. G., Kamp, M. & Höfling, S. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Laser Photon. Rev. 10, 870–894 (2016).

    ADS  Google Scholar 

  101. Lenzini, F., Gruhler, N., Walter, N. & Pernice, W. H. P. Diamond as a platform for integrated quantum photonics. Adv. Quantum Technol. 1, 1800061 (2018).

    Google Scholar 

  102. Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

    ADS  Google Scholar 

  103. Siampour, H. et al. Unidirectional single-photon emission from germanium-vacancy zero-phonon lines: deterministic emitter-waveguide interfacing at plasmonic hot spots. Preprint at https://arxiv.org/abs/1903.05446 (2019).

  104. Kewes, G. et al. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures. Sci. Rep. 6, 28877 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

A.W.E. acknowledges support from the Swedish Research Council (Vetenskapsrådet) Starting Grant (ref: 2016-03905) and the ATTRACT project funded by the EC under Grant Agreement 777222. O.B. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer 182087777 - SFB 951 within project B2 and B18. W.P. acknowledges support of ERC grant CoG 724707. V.Z. acknowledges support of the ATTRACT project funded by the EC under Grant Agreement 777222, funding from the Knut and Alice Wallenberg Foundation Grant “Quantum Sensors” and support from the Swedish Research Council (VR) through the VR Grant for International Recruitment of Leading Researchers (ref. 2013-7152) and Research Environment Grant (ref. 2016-06122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali W. Elshaari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elshaari, A.W., Pernice, W., Srinivasan, K. et al. Hybrid integrated quantum photonic circuits. Nat. Photonics 14, 285–298 (2020). https://doi.org/10.1038/s41566-020-0609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0609-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing