Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanophotonic phase noise filter in silicon

Abstract

Narrow-linewidth light sources have far-reaching applications from communication1 to metrology2,3,4. Benchtop linewidth reduction methods such as feedback5,6 and feed-forward7,8 schemes have been used to reduce the linewidth of lasers. The feedback scheme typically has a limited bandwidth and depends on the laser characteristics and the feed-forward scheme is highly sensitive to gain and delay mismatches. Here, we report the demonstration of an integrated nanophotonic phase noise filter, which can be placed after a low-cost laser to significantly suppress its phase noise independent of the light source. The hybrid-integrated electronic–photonic system measures and suppresses the phase noise of the input light using an electronic–photonic loop without interacting with the light source. Using the integrated phase noise filter, laser linewidth reduction from 2.55 MHz to 4 kHz and from 200 kHz to 320 Hz is demonstrated. The silicon photonic and complementary metal–oxide–semiconductor (CMOS) electronic chips were hybrid-integrated within a footprint of 3 mm2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase noise filter.
Fig. 2: SSB intensity modulator.
Fig. 3: Frequency noise discriminator.
Fig. 4: The implemented phase noise filter.
Fig. 5: Measurement set-up and results.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Al-Taiy, H. et al. Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy. Opt. Lett. 39, 5826–5829 (2014).

    Article  ADS  Google Scholar 

  2. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  3. Katori, H. Optical lattice clocks and quantum metrology. Nat. Photon. 5, 203–210 (2011).

    Article  ADS  Google Scholar 

  4. Cygan, A. et al. Cavity mode-width spectroscopy with widely tunable ultra narrow laser. Opt. Express 21, 29744–29754 (2013).

    Article  ADS  Google Scholar 

  5. Ohtsu, M., Murata, M. & Kourogi, M. FM noise reduction and subkilohertz linewidth of an AlGaAs laser by negative electrical feedback. IEEE J. Quantum Electron. 26, 231–241 (1990).

    Article  ADS  Google Scholar 

  6. Shin, C.-H. & Ohtsu, M. Stable semiconductor laser with a 7-Hz linewidth by an optical–electrical double-feedback technique. Opt. Lett. 15, 1455–1457 (1990).

    Article  ADS  Google Scholar 

  7. Aflatouni, F., Bagheri, M. & Hashemi, H. Design methodology and architectures to reduce the semiconductor laser phase noise using electrical feedforward schemes. IEEE Trans. Microw. Theory Techn. 58, 3290–3303 (2010).

    Article  ADS  Google Scholar 

  8. Aflatouni, F. & Hashemi, H. Wideband tunable laser phase noise reduction using single sideband modulation in an electro-optical feed-forward scheme. Opt. Lett. 37, 196–198 (2012).

    Article  ADS  Google Scholar 

  9. Jiang, Y. et al. Making optical atomic clocks more stable with 10−16-level laser stabilization. Nat. Photon. 5, 158–161 (2011).

    Article  ADS  Google Scholar 

  10. Takamoto, M., Hong, F.-L., Higashi, R. & Katori, H. An optical lattice clock. Nature 435, 321–324 (2005).

    Article  ADS  Google Scholar 

  11. Ashtiani, F., Sanjari, P., Idjadi, M. H. & Aflatouni, F. High-resolution optical frequency synthesis using an integrated electro-optical phase-locked loop. IEEE Trans. Microw. Theory Techn. 66, 5922–5932 (2018).

    Article  ADS  Google Scholar 

  12. Lu, M. et al. Highly integrated optical heterodyne phase-locked loop with phase/frequency detection. Opt. Express 20, 9736–9741 (2012).

    Article  ADS  Google Scholar 

  13. Aflatouni, F. et al. Electronic laser phase noise reduction. In 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 265–268 (IEEE, 2013).

  14. Drever, R. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).

    Article  ADS  Google Scholar 

  15. Idjadi, M. H. & Aflatouni, F. Integrated Pound−Drever−Hall laser stabilization system in silicon. Nat. Commun. 8, 1209 (2017).

    Article  ADS  Google Scholar 

  16. Spencer, D. T. et al. Stabilization of heterogeneous silicon lasers using Pound-Drever-Hall locking to Si3N4 ring resonators. Opt. Express 24, 13511–13517 (2016).

    Article  ADS  Google Scholar 

  17. Dahmani, B., Hollberg, L. & Drullinger, R. Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett. 12, 876–878 (1987).

    Article  ADS  Google Scholar 

  18. Lang, R. & Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16, 347–355 (1980).

    Article  ADS  Google Scholar 

  19. Xiang, C., Morton, P. A. & Bowers, J. E. 1550 nm laser with 320 Hz Lorentzian linewidth based on semiconductor gain chip and extended Si3N4 Bragg grating. In CLEO: Science and Innovations SW4N.6 (IEEE, 2019).

  20. Yasaka, H., Yoshikuni, Y. & Kawaguchi, H. FM noise and spectral linewidth reduction by incoherent optical negative feedback. IEEE J. Quantum Electron. 27, 193–204 (1991).

    Article  ADS  Google Scholar 

  21. Saito, S., Nilsson, O. & Yamamoto, Y. Coherent FSK transmitter using a negative feedback stabilised semiconductor laser. Electron. Lett. 20, 703–704 (1984).

    Article  ADS  Google Scholar 

  22. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  23. Novack, A. et al. A 30 GHz silicon photonic platform. In 10th Int. Conf. Group IV Photonics 7–8 (IEEE, 2013).

  24. Aflatouni, F., Abiri, B. & Hajimiri, S. A. Integrated light source independent linewidth reduction of lasers using electro-optical feedback techniques. US patent 9,482,886 (2016).

  25. Gardner, F. M. Phaselock Techniques Ch. 5 (John Wiley & Sons, 2005).

  26. Behbahani, F., Kishigami, Y., Leete, J. & Abidi, A. A. CMOS mixers and polyphase filters for large image rejection. IEEE J. Solid State Circuits 36, 873–887 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by DARPA under contract number HR0011-19-2-0013. The CMOS chip fabrication was supported by MOSIS Services.

Author information

Authors and Affiliations

Authors

Contributions

M.H.I. and F.A. conceived the project idea. M.H.I. designed, simulated and laid out the integrated electronic and photonic circuits and conducted measurements. F.A. directed and supervised the project. M.H.I. and F.A. wrote the manuscript.

Corresponding author

Correspondence to Firooz Aflatouni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Effect of SSB non-idealities on linewidth reduction performance.

Simulated linewidth reduction efficiency, 𝜂, representing the effect of SSB non-idealities on linewidth reduction performance.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Figs. 1–8 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idjadi, M.H., Aflatouni, F. Nanophotonic phase noise filter in silicon. Nat. Photonics 14, 234–239 (2020). https://doi.org/10.1038/s41566-020-0605-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0605-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing