Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermophotonic cooling with light-emitting diodes

Abstract

The currently ubiquitous light-emitting diodes (LEDs) have revolutionized the lighting industry. Contrary to common belief, however, LEDs are much more than just simple electricity-to-light converters. They are solid-state thermodynamic machines, theoretically capable of continuous and near-reversible energy conversion between electrical, thermal and optical energy. For over 50 years, the possibility of exploiting LEDs as efficient solid-state coolers has remained largely out of reach due to the high-material-quality requirements and commercial focus on light emission. Recent promising advances in electroluminescent cooling by LEDs, however, suggest that the remaining challenges in the area may be surmountable and practical cooling could be feasible. This Perspective discusses recent achievements in electroluminescent cooling, outlining the expected promise, the remaining challenges and their potential solutions.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Examples of thermophotonic machines for cooling and energy harvesting compared with thermoelectric devices.
Fig. 2: Progress of the efficiency of LEDs and selected state-of-the-art LED structures.
Fig. 3: Comparison between small- and large-bias ELC.
Fig. 4: Illustration of the key challenges of ELC.

References

  1. Solid-State Lighting Research and Development (US Department of Energy, 2012); http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2012_web.pdf

  2. Round, H. J. A note on carborundum. Electr. World 49, 309 (1907).

    Google Scholar 

  3. Holonyak, N. & Bevacqua, S. F. Coherent (visible) light emission from Ga(As1−xPx) junctions. Appl. Phys. Lett. 1, 82–83 (1962).

    Article  ADS  Google Scholar 

  4. Lehovec, K., Accardo, C. A. & Jamgochian, E. Light emission produced by current injected into a green silicon-carbide crystal. Phys. Rev. 89, 20–25 (1953).

    Article  ADS  Google Scholar 

  5. Tauc, J. The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from a p–n junction. Czech. J. Phys. 7, 275–276 (1957).

    Article  ADS  Google Scholar 

  6. Keyes, R. J. & Quist, T. M. Recombination radiation emitted by gallium arsenide. Proc. IRE 50, 1822–1823 (1962).

    Article  Google Scholar 

  7. Dousmanis, G. C., Mueller, C. W., Nelson, H. & Petzinger, K. G. Evidence of refrigerating action by means of photon emission in semiconductor diodes. Phys. Rev. 133, A316–A318 (1964).

    Article  ADS  Google Scholar 

  8. Hurni, C. A. et al. Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation. Appl. Phys. Lett. 106, 031101 (2015).

    Article  ADS  Google Scholar 

  9. Bender, D. A., Cederberg, J. G., Wang, C. & Sheik-Bahae, M. Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling. Appl. Phys. Lett. 102, 252102 (2013).

    Article  ADS  Google Scholar 

  10. Gauck, H., Gfroerer, T. H., Renn, M. J., Cornell, E. A. & Bertness, K. A. External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure. Appl. Phys. A 64, 143–147 (1997).

    Article  ADS  Google Scholar 

  11. Schnitzer, I., Yablonovitch, E., Caneau, C. & Gmitter, T. J. Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures. Appl. Phys. Lett. 62, 131–133 (1993).

    Article  ADS  Google Scholar 

  12. Santhanam, P., Gray, D. J. & Ram, R. J. Thermoelectrically pumped light-emitting diodes operating above unity efficiency. Phys. Rev. Lett. 108, 097403 (2012).

    Article  ADS  Google Scholar 

  13. Santhanam, P., Huang, D., Ram, R. J., Remennyi, M. A. & Matveev, B. A. Room temperature thermo-electric pumping in mid-infrared light-emitting diodes. Appl. Phys. Lett. 103, 183513 (2013).

    Article  ADS  Google Scholar 

  14. Oksanen, J. & Tulkki, J. Thermophotonic heat pump — a theoretical model and numerical simulations. J. Appl. Phys. 107, 093106 (2010).

    Article  ADS  Google Scholar 

  15. Chen, K., Xiao, T. P., Santhanam, P., Yablonovitch, E. & Fan, S. High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell. J. Appl. Phys. 122, 143104 (2017).

    Article  ADS  Google Scholar 

  16. Xiao, T. P., Chen, K., Santhanam, P., Fan, S. & Yablonovitch, E. Electroluminescent refrigeration by ultra-efficient GaAs light-emitting diodes. J. Appl. Phys. 123, 173104 (2018).

    Article  ADS  Google Scholar 

  17. Piprek, J. & Li, Z.-M. Electroluminescent cooling mechanism in InGaN/GaN light-emitting diodes. Opt. Quantum Electron. 48, 472 (2016).

    Article  Google Scholar 

  18. Xue, J. et al. Thermally enhanced blue light-emitting diode. Appl. Phys. Lett. 107, 121109 (2015).

    Article  ADS  Google Scholar 

  19. Sadi, T., Radevici, I., Kivisaari, P. & Oksanen, J. Electroluminescent cooling in III–V intracavity diodes: practical requirements. IEEE Trans. Electron Devices 66, 963–968 (2019).

    Article  ADS  Google Scholar 

  20. Radevici, I. et al. Thermophotonic cooling in GaAs based light emitters. Appl. Phys. Lett. 114, 051101 (2019).

    Article  ADS  Google Scholar 

  21. Santhanam, P., Huang, D., Gray, D. J. & Ram, R. J. Electro-luminescent cooling: light emitting diodes above unity efficiency. Proc. SPIE 8638, 863807 (2013).

    Article  Google Scholar 

  22. Kuritzky, L. Y., Weisbuch, C. & Speck, J. S. Prospects for 100% wall-plug efficient III-nitride LEDs. Opt. Express 26, 16600–16608 (2018).

    Article  ADS  Google Scholar 

  23. Pringsheim, P. Zwei bemerkungen uber den unterchied von luminneszenz- und temperaturstrahlung. Z. Phys. 57, 739–746 (1929).

    Article  ADS  Google Scholar 

  24. Epstein, R. I., Buchwald, M. I., Edwards, B., Gosnell, T. R. & Mungan, C. E. Observations of laser induced fluorescent cooling of a solid. Nature 377, 500–503 (1995).

    Article  ADS  Google Scholar 

  25. Thiede, J., Distel, J., Greenfield, S. R. & Epstein, R. I. Cooling to 208K by optical refrigeration. Appl. Phys. Lett. 86, 154107 (2005).

    Article  ADS  Google Scholar 

  26. Sheik-Bahae, M. & Epstein, R. I. Can laser light cool semiconductors? Phys. Rev. Lett. 92, 247403 (2004).

    Article  ADS  Google Scholar 

  27. Sheik-Bahae, M. & Epstein, R. I. Optical refrigeration. Nat. Photon. 1, 693–699 (2007).

    Article  ADS  Google Scholar 

  28. Hehlen, M. P. et al. First demonstration of an all-solid-state optical cryocooler. Light Sci. Appl. 7, 15 (2018).

    Article  ADS  Google Scholar 

  29. Lin, C., Wang, B., Teo, K. H. & Zhang, Z. A coherent description of thermal radiative devices and its application on the near-field negative electroluminescent cooling. Energy 147, 177–186 (2018).

    Article  Google Scholar 

  30. Harder, N.-P. & Green, M. A. Thermophotonics. Semicond. Sci. Technol. 18, S270–S278 (2003).

    Article  Google Scholar 

  31. Lin, K. L., Catchpole, K. R., Campbell, P. & Green, M. A. High external quantum efficiency from double heterostructure InGaP/GaAs layers as selective emitters for thermophotonic systems. Semicond. Sci. Technol. 19, 1268–1272 (2004).

    Article  ADS  Google Scholar 

  32. Lin, K. L. et al. Thin semiconducting layers as selective emitters in thermophotonic systems. In Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference 939–942 (IEEE, 2002).

  33. Farrell, D. J., Sodabanlu, H., Wang, Y., Sugiyama, M. & Okada, Y. A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons. Nat. Commun. 6, 8685 (2015).

    Article  ADS  Google Scholar 

  34. Zhao, B., Santhanam, P., Chen, K., Buddhiraju, S. & Fan, S. Near-field thermophotonic systems for low-grade waste-heat recovery. Nano Lett. 18, 5224–5230 (2018).

    Article  ADS  Google Scholar 

  35. Zhao, B., Buddhiraju, S., Santhanam, P., Chen, K. & Fan, S. Self-sustaining thermophotonic circuits. Proc. Natl Acad. Sci. USA 116, 11596–11601 (2019).

    ADS  Google Scholar 

  36. Würfel, P. The chemical potential of radiation. J. Phys. C 15, 3967–3985 (1982).

    Article  ADS  Google Scholar 

  37. Riffat, S. B. & Ma, X. Improving the coefficient of performance of thermoelectric cooling systems: a review. Int. J. Energy Res. 28, 753–768 (2004).

    Article  Google Scholar 

  38. Aspnes, D. E., Kelso, M., Logan, R. A. & Bhat, R. Optical properties of AlxGa1−xAs. J. Appl. Phys. 60, 754–767 (1986).

    Article  ADS  Google Scholar 

  39. Ward, J. S. et al. Techno-economic analysis of three different substrate removal and reuse strategies for III–V solar cells. Prog. Photovolt. 24, 1284–1292 (2016).

    Article  Google Scholar 

  40. Catchpole, K. R. et al. High external quantum efficiency of planar semiconductor structures. Semicond. Sci. Technol. 19, 1232–1235 (2004).

    Article  ADS  Google Scholar 

  41. Min, G. & Rowe, D. M. Conditions for observing the thermo-electro-photo cooling effect. IET Sci. Meas. Technol. 1, 329–332 (2007).

    Article  Google Scholar 

  42. Heikkilä, O., Oksanen, J. & Tulkki, J. Ultimate limit and temperature dependency of light-emitting diode efficiency. J. Appl. Phys. 105, 093119 (2009).

    Article  ADS  Google Scholar 

  43. Malshukov, A. G. & Chao, K. A. Opto-thermionic refrigeration in semiconductor heterostructures. Phys. Rev. Lett. 86, 5570–5573 (2001).

    Article  ADS  Google Scholar 

  44. Han, P. et al. Analysis of optothermionic refrigeration based on semiconductor heterojunction. J. Appl. Phys. 99, 074504 (2006).

    Article  ADS  Google Scholar 

  45. Ram, R. J. Thermophotonics for ultra-high efficiency visible LEDs. Proc. SPIE 10124, 1012414 (2017).

    Article  Google Scholar 

  46. Olsson, A. et al. Optical energy transfer and loss mechanisms in coupled intracavity light emitters. IEEE Trans. Electron Devices 63, 3567–3573 (2016).

    Article  ADS  Google Scholar 

  47. Huang, D., Santhanam, P. & Ram, R. J. Low-power communication with a photonic heat pump. Opt. Express 22, A1650–A1658 (2014).

    Article  ADS  Google Scholar 

  48. Radevici, I., Tiira, J. & Oksanen, J. Lock-in thermography approach for imaging the efficiency of light emitters and optical coolers. Proc. SPIE 10121, 101210Q (2017).

    Article  Google Scholar 

  49. Radevici, I., Tiira, J., Sadi, T. & Oksanen, J. Influence of photo-generated carriers on current spreading in double diode structures for electroluminescent cooling. Semicond. Sci. Technol. 33, 05LT01 (2018).

    Article  Google Scholar 

  50. Sadi, T. et al. Electroluminescent cooling in intracavity light emitters: modeling and experiments. Opt. Quantum Electron. 50, 18 (2018).

    Article  Google Scholar 

  51. Sadi, T., Radevici, I., Kivisaari, P. & Oksanen, J. Electroluminescent cooling in III–V intracavity diodes: efficiency bottlenecks. IEEE Trans. Electron Devices 66, 2651–2656 (2019).

    Article  ADS  Google Scholar 

  52. Gilliland, G. D., Wolford, D. J., Kuech, T. F., Bradley, J. A. & Hjalmarson, H. P. Minority-carrier recombination kinetics and transport in surface-free GaAs/AlxGa1−xAs double heterostructures. J. Appl. Phys. 73, 8386 (1993).

    Article  ADS  Google Scholar 

  53. Nelson, R. J. & Sobers, R. G. Minority-carrier lifetimes and internal quantum efficiency of surface free GaAs. J. Appl. Phys. 49, 6103–6108 (1978).

    Article  ADS  Google Scholar 

  54. Broell, M. et al. New developments on high-efficiency infrared and InGaAlP light-emitting diodes at OSRAM Opto Semiconductors. Proc. SPIE 9003, 90030L (2014).

    Article  Google Scholar 

  55. Li, N. et al. Ultra-low-power sub-photon-voltage high-efficiency light-emitting diodes. Nat. Photon. 13, 588–592 (2019).

    Article  ADS  Google Scholar 

  56. Baca, A. G. & Ashby, C. I. H. Fabrication of GaAs Devices (The Institution of Engineering and Technology, 2005).

  57. Wada, Y. & Wada, K. GaAs surface passivation by deposition of an ultrathin InP-related layer. Appl. Phys. Lett. 63, 379–381 (1993).

    Article  ADS  Google Scholar 

  58. Levinshtein, M., Rumyantsev, S. & Shur, M. Ternary and Quaternary III–V Compounds (Handbook Series on Semiconductor Parameters, World Scientific Publishing, 1999).

  59. Punkkinen, M. P. J. et al. Oxidized In-containing III–V(100) surfaces: formation of crystalline oxide films and semiconductor-oxide interfaces. Phys. Rev. B 83, 195329 (2011).

    Article  ADS  Google Scholar 

  60. Strauss, U., Rühle, W. W. & Köhler, K. Auger recombination in intrinsic GaAs. Appl. Phys. Lett. 62, 55–57 (1993).

    Article  ADS  Google Scholar 

  61. Espinet-González, P. et al. Analysis of perimeter recombination in the subcells of GaInP/GaAs/Ge triple-junction solar cells. Prog. Photovolt. 23, 874–882 (2015).

    Article  Google Scholar 

  62. Guo, X. & Schubert, E. F. Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates. Appl. Phys. Lett. 78, 3337–3339 (2001).

    Article  ADS  Google Scholar 

  63. Kuritzky, L. Y. et al. High wall-plug efficiency blue III-nitride LEDs designed for low current density operation. Opt. Express 25, 30696–30707 (2017).

    Article  ADS  Google Scholar 

  64. Li, Z., Xue, J. & Ram, R. A design of a PhC-enhanced LED for electroluminescence cooling. Proc. SPIE 10121, 1012108 (2017).

    Article  Google Scholar 

  65. Myllynen, A., Sadi, T. & Oksanen, J. Diffusion-driven GaInP/GaAs light-emitting diodes enhanced by modulation doping. Opt. Quantum Electron. 51, 90 (2019).

    Article  Google Scholar 

  66. Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovolt. 2, 303–311 (2012).

    Article  Google Scholar 

  67. Green, M. A. et al. Solar cell efficiency tables (version 54). Prog. Photovolt. 27, 565–575 (2019).

    Article  Google Scholar 

  68. Chen, H.-L. et al. A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror. Nat. Energy 4, 761–767 (2019).

    Article  ADS  Google Scholar 

  69. Perl, E. E. et al. Measurements and modeling of III–V solar cells at high temperatures up to 400°C. IEEE J. Photovolt. 6, 1345–1352 (2016).

    Article  Google Scholar 

  70. Steiner, M. A. et al. AlGaInP/GaAs tandem solar cells for power conversion at 400°C and high concentration. AIP Conf. Proc. 1881, 040007 (2017).

    Article  Google Scholar 

  71. Tsao, J. Y. et al. Toward smart and ultra-efficient solid-state lighting. Adv. Optical Mater. 2, 809–836 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Academy of Finland, the Photonics Research and Innovation (PREIN) flagship programme and the European Research Council under the Horizon 2020 research and innovation programme (grant agreement number 638173). We acknowledge the provision of facilities and technical support by Aalto University at the Micronova Nanofabrication Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toufik Sadi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadi, T., Radevici, I. & Oksanen, J. Thermophotonic cooling with light-emitting diodes. Nat. Photonics 14, 205–214 (2020). https://doi.org/10.1038/s41566-020-0600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0600-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing