Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Earth rotation measured by a chip-scale ring laser gyroscope

An Author Correction to this article was published on 25 March 2020

This article has been updated


Optical gyroscopes are among the most accurate rotation measuring devices and are widely used for navigation and accurate pointing. Since the advent of photonic integrated components for communications, and with their increasing complexity, there has been interest in the possibility of chip-scale optical gyroscopes1. Besides the potential benefits of integration, such solid-state systems would be robust and resistant to shock. Here, we report a gyroscope using Brillouin ring lasers on a silicon chip. Its stability and sensitivity enable measurement of Earth’s rotation, representing a major milestone for this new class of gyroscope.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Earth rotation measured using a microresonator ring laser gyroscope.
Fig. 2: Gyroscope performance measurements.
Fig. 3: Earth rotation measurement.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code that supports the plots within this paper and other findings of this study is available from the corresponding author upon reasonable request.

Change history

  • 25 March 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Dell’Olio, F., Tatoli, T., Ciminelli, C. & Armenise, M. Recent advances in miniaturized optical gyroscopes. J. Eur. Opt. Soc. 9, 14013 (2014).

    Article  Google Scholar 

  2. 2.

    Sagnac, G. L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme. C. R. Acad. Sci. 95, 708–710 (1913).

  3. 3.

    Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967).

    ADS  Article  Google Scholar 

  4. 4.

    Lefèvre, H. C.The Fiber-Optic Gyroscope 2nd edn (Artech House, 2014).

  5. 5.

    Chow, W. W. et al. The ring laser gyro. Rev. Mod. Phys. 57, 61–104 (1985).

    ADS  Article  Google Scholar 

  6. 6.

    Armenise, M. N., Ciminelli, C., Dell’Olio, F. & Passaro, V. M. N. Advances in Gyroscope Technologies (Springer, 2010).

  7. 7.

    Liu, K. et al. The development of micro-gyroscope technology. J. Micromech. Microeng. 19, 113001 (2009).

    ADS  Article  Google Scholar 

  8. 8.

    Lee, H., Chen, T., Li, J., Painter, O. & Vahala, K. J. Ultra-low-loss optical delay line on a silicon chip. Nat. Commun. 3, 867 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Bauters, J. F. et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 19, 24090–24101 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Spencer, D. T., Bauters, J. F., Heck, M. J. R. & Bowers, J. E. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica 1, 153–157 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Li, J., Suh, M. G. & Vahala, K. J. Microresonator Brillouin gyroscope. Optica 4, 346–348 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).

    ADS  Article  Google Scholar 

  14. 14.

    Gundavarapu, S. et al. Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil. J. Light. Technol. 36, 1185–1191 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    Liang, W. et al. Resonant microphotonic gyroscope. Optica 4, 114–117 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Zhang, J., Ma, H., Li, H. & Jin, Z. Single-polarization fiber-pigtailed high-finesse silica waveguide ring resonator for a resonant micro-optic gyroscope. Opt. Lett. 42, 3658–3661 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Khial, P. P., White, A. D. & Hajimiri, A. Nanophotonic optical gyroscope with reciprocal sensitivity enhancement. Nat. Photon. 12, 671–675 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Maayani, S. et al. Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569–572 (2018).

    ADS  Article  Google Scholar 

  19. 19.

    Zarinetchi, F., Smith, S. P. & Ezekiel, S. Stimulated Brillouin fiber-optic laser gyroscope. Opt. Lett. 16, 229–231 (1991).

    ADS  Article  Google Scholar 

  20. 20.

    Kadiwar, R. K. & Giles, I. P. Optical fibre Brillouin ring laser gyroscope. Electron. Lett. 25, 1729–1731 (1989).

    ADS  Article  Google Scholar 

  21. 21.

    Li, J., Lee, H., Chen, T. & Vahala, K. J. Characterization of a high coherence, Brillouin microcavity laser on silicon. Opt. Express 20, 20170–20180 (2012).

    ADS  Article  Google Scholar 

  22. 22.

    Black, E. D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001).

    ADS  Article  Google Scholar 

  23. 23.

    Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon. 12, 297–302 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Lai, Y.-H., Lu, Y.-K., Suh, M.-G., Yuan, Z. & Vahala, K. Observation of the exceptional-point-enhanced Sagnac effect. Nature 576, 65–69 (2019).

    ADS  Article  Google Scholar 

  25. 25.

    Matsko, A. B., Liang, W., Savchenkov, A. A., Ilchenko, V. S. & Maleki, L. Fundamental limitations of sensitivity of whispering gallery mode gyroscopes. Phys. Lett. A 382, 2289–2295 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000).

    ADS  Article  Google Scholar 

  27. 27.

    Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

    ADS  Article  Google Scholar 

Download references


We thank the Defense Advanced Research Projects Agency (DARPA) for financial support (N66001-16-1-4046) and A. Chern, C.-L. Liu, L. Peng and X. Yi at Caltech for helpful discussions. We also gratefully acknowledge the critical support and infrastructure provided for this work by The Kavli Nanoscience Institute at Caltech.

Author information




Y.-H.L., M.-G.S., J.L. and K.V. conceived the offset-counter-pumped SBL gyroscope for the Earth rotation measurement; M.-G.S. fabricated the microresonator devices; Y.-H.L. and M.-G.S. conducted the measurement, with assistance from J.L., Y.-K.L., B.S., Q.-F.Y., S.H.L. and K.Y.Y.; Y.-H.L., M.-G.S. and K.V. analysed the data; Y.-H.L., Y.-K.L. and K.V. derived the theory; H.W. provided the Kerr linewidth analysis; Y.-H.L., M.-G.S. and K.V. contributed to writing the manuscript; K.V. supervised the project.

Corresponding author

Correspondence to Kerry Vahala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Packaged gyroscope.

Photograph of a 36mm-diameter silica resonator ring laser gyroscope packaged in a brass module with a thermoelectric cooler and fiber connectors.

Extended Data Fig. 2 System diagram of Earth rotation measurement.

See text for operational description. EDFA: erbium-doped fiber amplifier, AOM: acoustic-optical modulator, PM: phase modulator, PD: photo-detector, FC: frequency counter, TM: temperature monitor, PI: proportional-integral servo, ESA: electrical spectrum analyzer, RF: radio frequency, TEC: thermal electric cooler, f1 (f2): modulation frequency of AOM1 (AOM2), fPDH: modulation frequency of the phase modulator for Pound-Drever-Hall locking loop. The ESA is used for beat signal characterization on the photodetectors and is disconnected during the Earth rotation measurement.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lai, YH., Suh, MG., Lu, YK. et al. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photonics 14, 345–349 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing