Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum

Abstract

Today, it is well known that light possesses a linear momentum that is along the propagation direction. Besides, scientists also discovered that light can possess an angular momentum, a spin angular momentum (SAM) associated with circular polarization and an orbital angular momentum (OAM) owing to the azimuthally dependent phase. Even though such angular momenta are longitudinal in general, an SAM transverse to the propagation direction has opened up a variety of key applications1. In contrast, investigations of the transverse OAM are rare due to its complex nature. Here, we demonstrate a three-dimensional wave packet that is a spatiotemporal (ST) optical vortex with a controllable purely transverse OAM. Contrary to the transverse SAM, the magnitude of the transverse OAM carried by the ST vortex is scalable to a larger value by simple adjustments. Since the ST vortex carries a controllable OAM uniquely in the transverse dimension, it has strong potential for novel applications that may not be possible otherwise. The scheme reported here can be readily adapted for other spectral regimes and different wave fields, opening opportunities for the study and applications of ST vortices in a wide range of areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of a pulse vortex beam and an ST vortex.
Fig. 2: Measurement of the ST vortex for l = 1.
Fig. 3: Measurement of the ST vortex for l = 2.
Fig. 4: 3D iso-intensity profiles of ST vortices.

Similar content being viewed by others

Data availability

All data of this study are available from the corresponding authors upon reasonable request.

Code availability

All codes used for data analysis and simulations are available from the corresponding authors upon reasonable request.

References

  1. Ariello, A., Banzer, P., Neugebauer, M. & Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photon. 9, 789–795 (2015).

    Article  ADS  Google Scholar 

  2. Poynting, J. H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909).

    Article  ADS  Google Scholar 

  3. Richards, B. & Wolf, E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A 253, 358–379 (1959).

    Article  ADS  Google Scholar 

  4. Bliokh, K. Y. & Nori, F. Transverse spin of a surface polariton. Phys. Rev. A 85, 061801 (2012).

    Article  ADS  Google Scholar 

  5. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  ADS  Google Scholar 

  6. Rodríguez-Herrera, O. G., Lara, D., Bliokh, K. Y., Ostrovskaya, E. A. & Dainty, C. Optical nanoprobing via spin-orbit interaction of light. Phys. Rev. Lett. 104, 253601 (2010).

    Article  ADS  Google Scholar 

  7. Zhao, Y., Edgar, J. S., Jeffries, G. D., McGloin, D. & Chiu, D. T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99, 073901 (2007).

    Article  ADS  Google Scholar 

  8. Pichler, H., Ramos, T., Daley, A. J. & Zoller, P. Quantum optics of chiral spin networks. Phys. Rev. A 91, 042116 (2015).

    Article  ADS  Google Scholar 

  9. Cardano, F. & Marrucci, L. Spin–orbit photonics. Nat. Photon. 9, 776–778 (2015).

    Article  ADS  Google Scholar 

  10. Neugebauer, M., Bauer, T., Aiello, A. & Banzer, P. Measuring the transverse spin density of light. Phys. Rev. Lett. 114, 063901 (2015).

    Article  ADS  Google Scholar 

  11. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  12. Coullet, P., Gil, G. & Rocca, F. Optical vortices. Opt. Commun. 73, 403–408 (1989).

    Article  ADS  Google Scholar 

  13. He, H., Friese, M., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995).

    Article  ADS  Google Scholar 

  14. Yan, L. et al. Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy. Optica 2, 900–903 (2015).

    Article  ADS  Google Scholar 

  15. Djordjevic, I. B. & Arabaci, M. LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication. Opt. Express 18, 24722–24728 (2010).

    Article  ADS  Google Scholar 

  16. Sukhorukov, A. P. & Yangirova, V. V. Spatio-temporal vortices: properties, generation and recording. Proc. SPIE 5949, 594906 (2005).

    Article  Google Scholar 

  17. Bliokh, K. Y. & Nori, F. Spatiotemporal vortex beams and angular momentum. Phys. Rev. A 86, 033824 (2012).

    Article  ADS  Google Scholar 

  18. Jhajj, N. et al. Spatiotemporal optical vortices. Phys. Rev. X 6, 031037 (2016).

    Google Scholar 

  19. Rego, L. et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364, eaaw9486 (2019).

    Article  ADS  Google Scholar 

  20. Cornacchio, J. V. & Soni, R. P. On a relation between two-dimensional Fourier integrals and series of Hankel transforms. J. Res. Natl Bureau Standards B 69B, 173–174 (1965).

    Article  MathSciNet  Google Scholar 

  21. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrument. 71, 1929–1960 (2000).

    Article  ADS  Google Scholar 

  22. Dallaire, M., McCarthy, N. & Piché, M. Spatiotemporal Bessel beams: theory and experiments. Opt. Express 17, 18148–18164 (2009).

    Article  ADS  Google Scholar 

  23. Kondakci, H. K. & Abouraddy, A. F. Diffraction-free space-time light sheets. Nat. Photon. 11, 733–740 (2017).

    Article  ADS  Google Scholar 

  24. Li, Y. & Lewellen, J. W. Generating a quasiellipsoidal electron beam by 3D laser-pulse shaping. Phys. Rev. Lett. 100, 074801 (2008).

    Article  ADS  Google Scholar 

  25. Li, H., Bazarov, I. V., Dunham, B. M. & Wise, F. W. Three-dimensional laser pulse intensity diagnostic for photoinjectors. Phys. Rev. ST Accel. Beams 14, 112802 (2011).

    Article  ADS  Google Scholar 

  26. Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  27. Hancock, S. W., Zahedpour, S., Goffin, A. & Milchberg, H. M. Free-space propagation of spatiotemporal optical vortices. Optica 6, 1547–1553 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.C. proposed the original idea and performed all experiments and some theoretical analysis. C.W. performed all theoretical analysis and some experiments. J.C. contributed in developing the measurement method. Q.Z. guided the theoretical analysis and supervised the project. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Andy Chong or Qiwen Zhan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, captions for videos 1–7 and refs. 1–9.

Supplementary Video 1

Experimental phase pattern movie as the reference pulse is scanned on the ST vortex with l = 1. The first two slides are beam profiles of the ST vortex and reference beam, respectively. The scanning step size is ~33 fs. The reference pulse duration is ~90 fs.

Supplementary Video 2

Theoretical phase pattern movie as the reference pulse is scanned on the ST vortex with l = 1.

Supplementary Video 3

Experimental phase pattern movie as the reference pulse is scanned on the ST vortex with l = −1. The scanning step size is ~33 fs.

Supplementary Video 4

Experimental phase pattern movie as the reference pulse is scanned on the ST vortex with l = 2. The scanning step size is ~33 fs.

Supplementary Video 5

Theoretical phase pattern movie as the reference pulse is scanned on the ST vortex with l = 2.

Supplementary Video 6

Experimental 3D iso-intensity movie of the ST vortex with l = 1.

Supplementary Video 7

Experimental 3D iso-intensity movie of the ST vortex with l = 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, A., Wan, C., Chen, J. et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics 14, 350–354 (2020). https://doi.org/10.1038/s41566-020-0587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0587-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing