Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection

Abstract

Displacement measurement is a fundamental functionality in modern science and technology. Although there has been remarkable progress in the precision of such measurements with various laser ranging methods1,2,3,4,5,6,7,8, they are incapable of capturing fast and complex mechanical displacements. Here, we have established a displacement measurement method using time-of-flight detection9 with femtosecond optical pulses and frequency-locked electrical waveforms. This method uniquely combines ultrafast measurement speed, sub-nanometre precision and non-ambiguity range of more than several millimetres. The achieved performance features unprecedented detection speed and precision. Starting from 24 nm precision for 4 ns acquisition time, the precision can reach 180 pm for 5 ms acquisition time. Using this method, we show real-time detection of single-event, fast and high-dynamic-range mechanical displacements. This capability can lead to the realization of new measurement and analysis platforms for studying broadband, transient and nonlinear mechanical dynamics in real time, which will be useful for directly probing optomechanics10, the onset of cracks11, dynamic deformations12, nonlinear vibrations13, ultrasonic phenomena14 and cell-generated forces15.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EOS-TD-based TOF detection method.
Fig. 2: Measurement precision analysis of the EOS-TD-based TOF detection method.
Fig. 3: EOS-TD-based TOF sensor demonstration results.
Fig. 4: EOS-TD-based real-time, nanometre-precision, dynamic displacement measurement results.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Schibli, T. R. et al. Displacement metrology with sub-pm resolution in air based on a fs-comb wavelength synthesizer. Opt. Express 14, 5984–5993 (2006).

    Article  ADS  Google Scholar 

  2. Pierce, R., Leitch, J., Stephens, M., Bender, P. & Nerem, R. Intersatellite range monitoring using optical interferometry. Appl. Opt. 47, 5007–5019 (2008).

    Article  ADS  Google Scholar 

  3. Militky, J., Kadulova, M. & Hlubina, P. Highly sensitive displacement measurement based on spectral interferometry and Vernier effect. Opt. Commun. 366, 335–339 (2016).

    Article  ADS  Google Scholar 

  4. Lee, J.-Y. & Jiang, G.-A. Displacement measurement using a wavelength-phase-shifting grating interferometer. Opt. Express 21, 25553–25564 (2013).

    Article  ADS  Google Scholar 

  5. Lee, J., Kim, Y. J., Lee, K., Lee, S. & Kim, S. W. Time-of-flight measurement with femtosecond light pulses. Nat. Photon. 4, 716–720 (2010).

    Article  ADS  Google Scholar 

  6. Coddington, I., Swann, W. C., Nenadovic, L. & Newbury, N. R. Rapid and precise absolute distance measurements at long range. Nat. Photon. 3, 351–356 (2009).

    Article  ADS  Google Scholar 

  7. Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    Article  ADS  Google Scholar 

  8. Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    Article  ADS  Google Scholar 

  9. Jeon, C.-G., Na, Y., Lee, B.-W. & Kim, J. Simple-structured, subfemtosecond-resolution optical-microwave phase detector. Opt. Lett. 43, 3997–4000 (2018).

    Article  ADS  Google Scholar 

  10. Vanner, M. R. et al. Pulsed quantum optomechanics. Proc. Natl Acad. Sci. USA 108, 16182–16187 (2011).

    Article  ADS  Google Scholar 

  11. Lu, Y. L., Zhu, T., Chen, L. A. & Bao, X. Y. Distributed vibration sensor based on coherent detection of phase-OTDR. J. Lightwave Technol. 28, 3243–3249 (2010).

    ADS  Google Scholar 

  12. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

    Article  Google Scholar 

  13. Ke, L. L., Yang, J. & Kitipornchai, S. Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos. Struct. 92, 676–683 (2010).

    Article  Google Scholar 

  14. Gomopoulos, N. et al. One-dimensional hypersonic phononic crystals. Nano Lett. 10, 980–984 (2010).

    Article  ADS  Google Scholar 

  15. Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).

    Article  Google Scholar 

  16. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  17. Teti, R., Jemielniak, K., O’Donnell, G. & Dornfeld, D. Advanced monitoring of machining operation. CIRP Annu. Manuf. Technol. 59, 717–739 (2010).

    Article  Google Scholar 

  18. Kim, J., Kartner, F. X. & Perrott, M. H. Femtosecond synchronization of radio frequency signals with optical pulse trains. Opt. Lett. 29, 2076–2078 (2004).

    Article  ADS  Google Scholar 

  19. Jung, K. & Kim, J. Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers. Opt. Lett. 37, 2958–2960 (2012).

    Article  ADS  Google Scholar 

  20. Peng, M. Y., Kalaydzhyan, A. & Kartner, F. X. Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization. Opt. Express 22, 27102–27111 (2014).

    Article  ADS  Google Scholar 

  21. Lu, X. et al. Time-of-flight detection of femtosecond laser pulses for precise measurement of large microelectronic step height. Opt. Lett. 43, 1447–1450 (2018).

    Article  ADS  Google Scholar 

  22. Lu, X. et al. Ultrasensitive, high-dynamic-range and broadband strain sensing by time-of-flight detection with femtosecond-laser frequency combs. Sci. Rep. 7, 13305 (2017).

    Article  ADS  Google Scholar 

  23. Bureau International des Poids et Mesures (BIPM) Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement JCGM 100:2008 (BIPM, 2008).

  24. López-Higuera, J. M., Rodriguez Cobo, L., Quintela Incera, A. & Cobo, A. Fiber optic sensors in structural health monitoring. J. Lightwave Technol. 29, 587–608 (2011).

    Article  ADS  Google Scholar 

  25. Marra, G. et al. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science 361, 486–490 (2018).

    ADS  Google Scholar 

  26. Liu, Q. et al. Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal strain monitoring. IEEE Photon. J. 4, 996–1003 (2012).

    Article  ADS  Google Scholar 

  27. Vanner, M. R. & Aspelmeyer, M. Cooling-by-measurement and mechanical state tomography via pulsed optomechanics. Nat. Commun. 4, 2295 (2013).

    Article  ADS  Google Scholar 

  28. Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    Article  ADS  Google Scholar 

  29. Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    Article  Google Scholar 

  30. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (grant no. 2018R1A2B3001793). We thank Y. Song, J. Suh and Y.-J. Kim for discussions. We thank C.-S. Kang for providing gauge-block assemblies and discussions on the uncertainty analysis. We also thank K. Yu for providing the MEMS sample used for surface profile imaging.

Author information

Authors and Affiliations

Authors

Contributions

J.K. initiated and managed the project. J.K. and Y.N. conceived the main ideas and designed the experiments. Y.N. led the overall experiments. Y.N., C.-G.J., C.A., M.H. and D.K. performed the experiments and obtained data. Y.N., C.-G.J., J.S. and J.K. analysed the data. Y.N. and J.K. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Jungwon Kim.

Ethics declarations

Competing interests

Two patents have been filed based on this work, with Korean patent application numbers 10-2019-0018203 and 10-2019-0018205.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, Y., Jeon, CG., Ahn, C. et al. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat. Photonics 14, 355–360 (2020). https://doi.org/10.1038/s41566-020-0586-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0586-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing