Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extreme-ultraviolet frequency combs for precision metrology and attosecond science


Femtosecond mode-locked lasers producing visible/infrared frequency combs have steadily advanced our understanding of fundamental processes in nature. For example, optical clocks employ frequency-comb techniques for the most precise measurements of time, permitting the search for minuscule drifts of natural constants. Furthermore, the generation of extreme-ultraviolet attosecond bursts synchronized to the electric field of visible/infrared femtosecond pulses affords real-time measurements of electron dynamics in matter. Cavity-enhanced high-order harmonic generation sources uniquely combine broadband vacuum- and extreme-ultraviolet spectral coverage with multimegahertz pulse repetition rates and coherence properties akin to those of frequency combs. Here we review the coming of age of this technology and its recent applications and prospects, including precision frequency-comb spectroscopy of electronic and potentially nuclear transitions, and low-space-charge attosecond-temporal-resolution photoelectron spectroscopy with nearly 100% temporal detection duty cycle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Representative selection of state-of-the-art HHG sources.
Fig. 2: Mode of operation of cavity-enhanced HHG.
Fig. 3: Nonlinearity-induced intensity limitations.
Fig. 4: XUV output coupling methods.
Fig. 5: XUV frequency-comb coherence and spectroscopy.
Fig. 6: PES employing cavity-enhanced HHG.


  1. 1.

    Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).

    ADS  Google Scholar 

  2. 2.

    Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).

    Google Scholar 

  3. 3.

    Reichert, J., Holzwarth, R., Udem, T. H. & Hänsch, T. W. Measuring the frequency of light with mode-locked lasers. Opt. Commun. 172, 59–68 (1999).

    ADS  Google Scholar 

  4. 4.

    Telle, H. R. et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    ADS  Google Scholar 

  5. 5.

    Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740–743 (2000).

    ADS  Google Scholar 

  6. 6.

    Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    ADS  Google Scholar 

  7. 7.

    Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    ADS  Google Scholar 

  8. 8.

    Agostini, P., Fabre, F., Mainfray, G., Petite, G. & Rahman, N. K. Free–free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127–1130 (1979).

    ADS  Google Scholar 

  9. 9.

    Macklin, J. J., Kmetec, J. D. & Gordon, C. L. High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766–769 (1993).

    ADS  Google Scholar 

  10. 10.

    Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Google Scholar 

  11. 11.

    Lewenstein, M. et al. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    ADS  Google Scholar 

  12. 12.

    Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Google Scholar 

  13. 13.

    Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    ADS  Google Scholar 

  14. 14.

    Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    ADS  Google Scholar 

  15. 15.

    Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    ADS  Google Scholar 

  16. 16.

    Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    ADS  Google Scholar 

  17. 17.

    Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    ADS  Google Scholar 

  18. 18.

    Schell, F. et al. Molecular orbital imprint in laser-driven electron recollision. Sci. Adv. 4, eaap8148 (2018).

    ADS  Google Scholar 

  19. 19.

    Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    ADS  Google Scholar 

  20. 20.

    Locher, R. et al. Energy-dependent photoemission delays from noble metal surfaces by attosecond interferometry. Optica 2, 405–410 (2015).

    ADS  Google Scholar 

  21. 21.

    Chen, C. et al. Distinguishing attosecond electron–electron scattering and screening in transition metals. Proc. Natl Acad. Sci. USA 114, E5300–E5307 (2017).

    Google Scholar 

  22. 22.

    Ambrosio, M. J. & Thumm, U. Electronic structure effects in spatiotemporally resolved photoemission interferograms of copper surfaces. Phys. Rev. A 96, 051403 (2017).

    ADS  Google Scholar 

  23. 23.

    Tao, Z. et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353, 62–67 (2016).

    MathSciNet  MATH  ADS  Google Scholar 

  24. 24.

    Stockman, M. I., Kling, M. F., Kleineberg, U. & Krausz, F. Attosecond nanoplasmonic-field microscope. Nat. Photon. 1, 539–544 (2007).

    ADS  Google Scholar 

  25. 25.

    Förg, B. et al. Attosecond nanoscale near-field sampling. Nat. Commun. 7, 11717 (2016).

    ADS  Google Scholar 

  26. 26.

    Chew, S. H. et al. Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses. Appl. Phys. Lett. 100, 051904 (2012).

    ADS  Google Scholar 

  27. 27.

    Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    ADS  Google Scholar 

  28. 28.

    Ye, J. & Cundiff, S. T. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2005).

  29. 29.

    Riehle, F., Gill, P., Arias, F. & Robertsson, L. The CIPM list of recommended frequency standard values: guidelines and procedures. Metrologia 55, 188–200 (2018).

    ADS  Google Scholar 

  30. 30.

    Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    ADS  Google Scholar 

  31. 31.

    Marian, A., Stowe, M. C., Lawall, J. R., Felinto, D. & Ye, J. United time-frequency spectroscopy for dynamics and global structure. Science 306, 2063–2068 (2004).

    ADS  Google Scholar 

  32. 32.

    Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    ADS  Google Scholar 

  33. 33.

    Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).

    ADS  Google Scholar 

  34. 34.

    Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    ADS  Google Scholar 

  35. 35.

    Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    ADS  Google Scholar 

  36. 36.

    Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon. 8, 530–536 (2014).

    ADS  Google Scholar 

  37. 37.

    Jones, R. J. & Ye, J. Femtosecond pulse amplification by coherent addition in a passive optical cavity. Opt. Lett. 27, 1848–1850 (2002).

    ADS  Google Scholar 

  38. 38.

    Jones, R. J. & Ye, J. High-repetition-rate coherent femtosecond pulse amplification with an external passive optical cavity. Opt. Lett. 29, 2812–2814 (2004).

    ADS  Google Scholar 

  39. 39.

    Mills, A. K., Hammond, T. J., Lam, M. H. C. & Jones, D. J. XUV frequency combs via femtosecond enhancement cavities. J. Phys. B 45, 142001 (2012).

    ADS  Google Scholar 

  40. 40.

    Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).

    ADS  Google Scholar 

  41. 41.

    Ozawa, A. & Kobayashi, Y. vuv frequency-comb spectroscopy of atomic xenon. Phys. Rev. A 87, 022507 (2013).

    ADS  Google Scholar 

  42. 42.

    Mills, A. K. et al. An XUV source using a femtosecond enhancement cavity for photoemission spectroscopy. Proc. SPIE 9512, 95121I (2015).

  43. 43.

    Mills, A. K. et al. Cavity-enhanced high harmonic generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 90, 083001 (2019).

    ADS  Google Scholar 

  44. 44.

    Corder, C. et al. Ultrafast extreme ultraviolet photoemission without space charge. Struct. Dyn. 5, 054301 (2018).

    Google Scholar 

  45. 45.

    Saule, T. et al. High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate. Nat. Commun. 10, 458 (2019).

    ADS  Google Scholar 

  46. 46.

    Siegman, A. E. Lasers (University Science Books, 1986).

  47. 47.

    Thorpe, M. J., Jones, R. J., Moll, K. D., Ye, J. & Lalezari, R. Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs. Opt. Express 13, 882–888 (2005).

    ADS  Google Scholar 

  48. 48.

    Ozawa, A. et al. High harmonic frequency combs for high resolution spectroscopy. Phys. Rev. Lett. 100, 253901 (2008).

    ADS  Google Scholar 

  49. 49.

    Lee, J., Carlson, D. R. & Jones, R. J. Optimizing intracavity high harmonic generation for XUV fs frequency combs. Opt. Express 19, 23315–23326 (2011).

    ADS  Google Scholar 

  50. 50.

    Hartl, I. et al. Cavity-enhanced similariton Yb-fiber laser frequency comb: 3 × 1014 W/cm2 peak intensity at 136 MHz. Opt. Lett. 32, 2870–2872 (2007).

    ADS  Google Scholar 

  51. 51.

    Eidam, T., Röser, F., Schmidt, O., Limpert, J. & Tünnermann, A. 57 W, 27 fs pulses from a fiber laser system using nonlinear compression. Appl. Phys. B 92, 9 (2008).

    ADS  Google Scholar 

  52. 52.

    Porat, G. et al. Phase-matched extreme-ultraviolet frequency-comb generation. Nat. Photon. 12, 387–391 (2018).

    ADS  Google Scholar 

  53. 53.

    Pupeza, I. et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nat. Photon. 7, 608–612 (2013).

    ADS  Google Scholar 

  54. 54.

    Ozawa, A., Zhao, Z., Kuwata-Gonokami, M. & Kobayashi, Y. High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation. Opt. Express 23, 15107–15118 (2015).

    ADS  Google Scholar 

  55. 55.

    Carstens, H. et al. High-harmonic generation at 250 MHz with photon energies exceeding 100 eV. Optica 3, 366–369 (2016).

    ADS  Google Scholar 

  56. 56.

    Carstens, H. et al. Megawatt-scale average-power ultrashort pulses in an enhancement cavity. Opt. Lett. 39, 2595–2598 (2014).

    ADS  Google Scholar 

  57. 57.

    Carstens, H. et al. Large-mode enhancement cavities. Opt. Express 21, 11606–11617 (2013).

    ADS  Google Scholar 

  58. 58.

    Lilienfein, N. et al. Enhancement cavities for few-cycle pulses. Opt. Lett. 42, 271–274 (2017).

    ADS  Google Scholar 

  59. 59.

    Jones, R. J., Thomann, I. & Ye, J. Precision stabilization of femtosecond lasers to high-finesse optical cavities. Phys. Rev. A 69, 051803 (2004).

    ADS  Google Scholar 

  60. 60.

    Schliesser, A., Gohle, C., Udem, T. & Hänsch, T. W. Complete characterization of a broadband high-finesse cavity using an optical frequency comb. Opt. Express 14, 5975–5983 (2006).

    ADS  Google Scholar 

  61. 61.

    Pupeza, I. et al. Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry. Opt. Express 18 26184–26195 (2010).

  62. 62.

    Hammond, T. J., Mills, A. K. & Jones, D. J. Simple method to determine dispersion of high-finesse optical cavities. Opt. Express 17, 8998–9005 (2009).

    ADS  Google Scholar 

  63. 63.

    Holzberger, S. et al. Femtosecond enhancement cavities in the nonlinear regime. Phys. Rev. Lett. 115, 023902 (2015).

    ADS  Google Scholar 

  64. 64.

    Högner, M. et al. Cavity-enhanced noncollinear high-harmonic generation. Opt. Express 27, 19675–19691 (2019).

    ADS  Google Scholar 

  65. 65.

    Holzberger, S. et al. Enhancement cavities for zero-offset-frequency pulse trains. Opt. Lett. 40, 2165–2168 (2015).

    ADS  Google Scholar 

  66. 66.

    Yost, D. C. et al. Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Opt. Express 19, 23483–23493 (2011).

    ADS  Google Scholar 

  67. 67.

    Hammond, T. J., Mills, A. K. & Jones, D. J. Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield. Opt. Express 19, 24871–24883 (2011).

    ADS  Google Scholar 

  68. 68.

    Moll, K. D., Jones, R. J. & Ye, J. Nonlinear dynamics inside femtosecond enhancement cavities. Opt. Express 13, 1672–1678 (2005).

    ADS  Google Scholar 

  69. 69.

    Allison, T. K., Cingöz, A., Yost, D. C. & Ye, J. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011).

    ADS  Google Scholar 

  70. 70.

    Carlson, D. R., Lee, J., Mongelli, J., Wright, E. M. & Jones, R. J. Intracavity ionization and pulse formation in femtosecond enhancement cavities. Opt. Lett. 36, 2991–2993 (2011).

    ADS  Google Scholar 

  71. 71.

    Lilienfein, N. et al. Temporal solitons in free-space femtosecond enhancement cavities. Nat. Photon. 13, 214–218 (2019).

    ADS  Google Scholar 

  72. 72.

    Kalashnikov, V. L., Gohle, C. & Udem, T. Maximization of the ultrashort pulse power stored in a passive resonator synchronously pumped by a femtosecond oscillator. In Advanced Solid-State Photonics, Technical Digest 652–656 (Optical Society of America, 2005);

  73. 73.

    Moll, K. D., Jones, R. J. & Ye, J. Output coupling methods for cavity-based high-harmonic generation. Opt. Express 14, 8189–8197 (2006).

    ADS  Google Scholar 

  74. 74.

    Yost, D. C., Schibli, T. R. & Ye, J. Efficient output coupling of intracavity high-harmonic generation. Opt. Lett. 33, 1099–1101 (2008).

    ADS  Google Scholar 

  75. 75.

    Högner, M., Saule, T. & Pupeza, I. Efficiency of cavity-enhanced high harmonic generation with geometric output coupling. J. Phys. B 52, 075401 (2019).

    ADS  Google Scholar 

  76. 76.

    Pupeza, I. et al. Cavity-enhanced high-harmonic generation with spatially tailored driving fields. Phys. Rev. Lett. 112, 103902 (2014).

    ADS  Google Scholar 

  77. 77.

    Zhang, C. et al. Noncollinear enhancement cavity for record-high out-coupling efficiency of an extreme-UV frequency comb. Phys. Rev. Lett. 125, 093902 (2020).

    ADS  Google Scholar 

  78. 78.

    Putnam, W. P., Schimpf, D. N., Abram, G. & Kärtner, F. X. Bessel–Gauss beam enhancement cavities for high-intensity applications. Opt. Express 20, 24429–24443 (2012).

    ADS  Google Scholar 

  79. 79.

    Pronin, O. et al. Ultrabroadband efficient intracavity XUV output coupler. Opt. Express 19, 10232–10240 (2011).

    ADS  Google Scholar 

  80. 80.

    Pupeza, I., Fill, E. E. & Krausz, F. Low-loss VIS/IR-XUV beam splitter for high-power applications. Opt. Express 19, 12108–12118 (2011).

    ADS  Google Scholar 

  81. 81.

    Jones, R. J. & Diels, J.-C. Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis. Phys. Rev. Lett. 86, 3288–3291 (2001).

    ADS  Google Scholar 

  82. 82.

    Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).

    ADS  Google Scholar 

  83. 83.

    Schibli, T. R. et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nat. Photon. 2, 355–359 (2008).

    ADS  Google Scholar 

  84. 84.

    Li, X. et al. High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools. Rev. Sci. Instrum. 87, 093114 (2016).

    ADS  Google Scholar 

  85. 85.

    Yost, D. C. et al. Vacuum-ultraviolet frequency combs from below-threshold harmonics. Nat. Phys. 5, 815–820 (2009).

    Google Scholar 

  86. 86.

    Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    ADS  Google Scholar 

  87. 87.

    Bergeson, S. D. et al. Measurement of the He ground state lamb shift via the two-photon 11S−21S transition. Phys. Rev. Lett. 80, 3475–3478 (1998).

    ADS  Google Scholar 

  88. 88.

    Eyler, E. E. et al. Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy. Eur. Phys. J. D 48, 43–55 (2008).

    ADS  Google Scholar 

  89. 89.

    Herrmann, M. et al. Feasibility of coherent xuv spectroscopy on the 1S−2S transition in singly ionized helium. Phys. Rev. A 79, 052505 (2009).

    ADS  Google Scholar 

  90. 90.

    Nauta, J. et al. Towards precision measurements on highly charged ions using a high harmonic generation frequency comb. Nucl. Instrum. Methods Phys. Res. B 408, 285–288 (2017).

    ADS  Google Scholar 

  91. 91.

    von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020).

  92. 92.

    Ye, J., Ma, L. S. & Hall, J. L. Molecular iodine clock. Phys. Rev. Lett. 87, 270801 (2001).

    Google Scholar 

  93. 93.

    von der Wense, L. & Zhang, C. Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock. Eur. Phys. J. D 74, 146 (2020).

    ADS  Google Scholar 

  94. 94.

    Hellmann, S., Rossnagel, K., Marczynski-Bühlow, M. & Kipp, L. Vacuum space-charge effects in solid-state photoemission. Phys. Rev. B 79, 035402 (2009).

    ADS  Google Scholar 

  95. 95.

    Buckanie, N. M. et al. Space charge effects in photoemission electron microscopy using amplified femtosecond laser pulses. J. Phys. Condens. Matter 21, 314003 (2009).

    Google Scholar 

  96. 96.

    Yamamoto, S. & Matsuda, I. Time-resolved photoelectron spectroscopies using synchrotron radiation: past, present, and future. J. Phys. Soc. Jpn 82, 021003 (2013).

    ADS  Google Scholar 

  97. 97.

    Na, M. X. et al. Direct determination of mode-projected electron–phonon coupling in the time domain. Science 366, 1231–1236 (2019).

    ADS  Google Scholar 

  98. 98.

    Iwasawa, H. et al. Rotatable high-resolution ARPES system for tunable linear-polarization geometry. J. Synchrotron Radiat. 24, 836–841 (2017).

    Google Scholar 

  99. 99.

    Kraus, P. M., Zürch, M., Cushing, S. K., Neumark, D. M. & Leone, S. R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2, 82–94 (2018).

  100. 100.

    Schoetz, J. et al. Perspective on petahertz electronics and attosecond nanoscopy. ACS Photon. 6, 3057–3069 (2019).

    Google Scholar 

  101. 101.

    Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    ADS  Google Scholar 

  102. 102.

    Muller, H. G. Reconstruction of attosecond harmonic beating by interference of two-photon transitions. Appl. Phys. B 74, s17–s21 (2002).

    ADS  Google Scholar 

  103. 103.

    Isinger, M. et al. Photoionization in the time and frequency domain. Science 358, 893–896 (2017).

    ADS  Google Scholar 

  104. 104.

    Högner, M., Tosa, V. & Pupeza, I. Generation of isolated attosecond pulses with enhancement cavities—a theoretical study. New J. Phys. 19, 033040 (2017).

    ADS  Google Scholar 

  105. 105.

    Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181–186 (2003).

    ADS  Google Scholar 

  106. 106.

    Berengut, J. C. & Flambaum, V. V. Testing time-variation of fundamental constants using a 229Th nuclear clock. Nucl. Phys. News 20, 19–22 (2010).

    Google Scholar 

  107. 107.

    Cilento, F. et al. Dynamics of correlation-frozen antinodal quasiparticles in superconducting cuprates. Sci. Adv. 4, eaar1998 (2018).

    ADS  Google Scholar 

  108. 108.

    Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490–493 (2011).

    ADS  Google Scholar 

  109. 109.

    Boschini, F. et al. Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence. Nat. Mater. 17, 416–420 (2018).

    ADS  Google Scholar 

  110. 110.

    Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photon. 8, 205–213 (2014).

    ADS  Google Scholar 

  111. 111.

    Geneaux, R., Marroux, H. J. B., Guggenmos, A., Neumark, D. M. & Leone, S. R. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. Phil. Trans. R. Soc. A 377, 20170463 (2019).

    ADS  Google Scholar 

  112. 112.

    Marangos, J. P. Development of high harmonic generation spectroscopy of organic molecules and biomolecules. J. Phys. B 49, 132001 (2016).

    ADS  Google Scholar 

  113. 113.

    Rothhardt, J., Tadesse, G. K., Eschen, W. & Limpert, J. Table-top nanoscale coherent imaging with XUV light. J. Opt. 20, 113001 (2018).

    ADS  Google Scholar 

  114. 114.

    Gaida, C. et al. High-power frequency comb at 2 μm wavelength emitted by a Tm-doped fiber laser system. Opt. Lett. 43, 5178–5181 (2018).

    ADS  Google Scholar 

  115. 115.

    Scoles, G. et al. Atomic and Molecular Beam Methods Vol. I (Oxford Univ. Press, 1988).

  116. 116.

    Takahashi, E. J., Nabekawa, Y. & Midorikawa, K. Low-divergence coherent soft X-ray source at 13nm by high-order harmonics. Appl. Phys. Lett. 84, 4–6 (2004).

    ADS  Google Scholar 

  117. 117.

    Takahashi, E. J. et al. Generation of strong optical field in soft X-ray region by using high-order harmonics. IEEE J. Sel. Top. Quantum Electron. 10, 1315–1328 (2004).

    ADS  Google Scholar 

  118. 118.

    Constant, E. et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82, 1668–1671 (1999).

    ADS  Google Scholar 

  119. 119.

    Ding, C. et al. High flux coherent super-continuum soft X-ray source driven by a single-stage, 10mJ, Ti:sapphire amplifier-pumped OPA. Opt. Express 22, 6194–6202 (2014).

    ADS  Google Scholar 

  120. 120.

    Lorek, E. et al. High-order harmonic generation using a high-repetition-rate turnkey laser. Rev. Sci. Instrum. 85, 123106 (2014).

    ADS  Google Scholar 

  121. 121.

    Rothhardt, J. et al. High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules. Opt. Express 24, 18133–18147 (2016).

    ADS  Google Scholar 

  122. 122.

    Klas, R. et al. Table-top milliwatt-class extreme ultraviolet high harmonic light source. Optica 3, 1167–1170 (2016).

    ADS  Google Scholar 

  123. 123.

    Rothhardt, J. et al. 53W average power few-cycle fiber laser system generating soft X rays up to the water window. Opt. Lett. 39, 5224–5227 (2014).

    ADS  Google Scholar 

  124. 124.

    Rothhardt, J. et al. Absorption-limited and phase-matched high harmonic generation in the tight focusing regime. New J. Phys. 16, 033022 (2014).

    ADS  Google Scholar 

  125. 125.

    Puppin, M. et al. Time- and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate. Rev. Sci. Instrum. 90, 023104 (2019).

    ADS  Google Scholar 

  126. 126.

    Hädrich, S. et al. High photon flux table-top coherent extreme-ultraviolet source. Nat. Photon. 8, 779–783 (2014).

    ADS  Google Scholar 

  127. 127.

    Chiang, C.-T. et al. Boosting laboratory photoelectron spectroscopy by megahertz high-order harmonics. New J. Phys. 17, 013035 (2015).

    ADS  Google Scholar 

  128. 128.

    Zhao, Z. & Kobayashi, Y. Realization of a mW-level 10.7-eV (λ=115.6nm) laser by cascaded third harmonic generation of a Yb:fiber CPA laser at 1-MHz. Opt. Express 25, 13517–13526 (2017).

    ADS  Google Scholar 

  129. 129.

    Emaury, F., Diebold, A., Saraceno, C. J. & Keller, U. Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator. Optica 2, 980–984 (2015).

    ADS  Google Scholar 

  130. 130.

    Hädrich, S. et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light Sci. Appl. 4, e320–e320 (2015).

    Google Scholar 

  131. 131.

    Vernaleken, A. et al. Single-pass high-harmonic generation at 20.8MHz repetition rate. Opt. Lett. 36, 3428–3430 (2011).

    ADS  Google Scholar 

  132. 132.

    Bernhardt, B. et al. Vacuum ultraviolet frequency combs generated by a femtosecond enhancement cavity in the visible. Opt. Lett. 37, 503–505 (2012).

    ADS  Google Scholar 

  133. 133.

    Penetrante, B. M., Wood, W. M., Siders, C. W., Bardsley, J. N. & Downer, M. C. Ionization-induced frequency shifts in intense femtosecond laser pulses. J. Opt. Soc. Am. B 9, 2032–2040 (1992).

    ADS  Google Scholar 

Download references


We thank C. Benko, J. Weitenberg, M. Weidman and L. von der Wense for valuable discussions.

Author information



Corresponding authors

Correspondence to Ioachim Pupeza or Jun Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pupeza, I., Zhang, C., Högner, M. et al. Extreme-ultraviolet frequency combs for precision metrology and attosecond science. Nat. Photonics 15, 175–186 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing