Abstract
Femtosecond mode-locked lasers producing visible/infrared frequency combs have steadily advanced our understanding of fundamental processes in nature. For example, optical clocks employ frequency-comb techniques for the most precise measurements of time, permitting the search for minuscule drifts of natural constants. Furthermore, the generation of extreme-ultraviolet attosecond bursts synchronized to the electric field of visible/infrared femtosecond pulses affords real-time measurements of electron dynamics in matter. Cavity-enhanced high-order harmonic generation sources uniquely combine broadband vacuum- and extreme-ultraviolet spectral coverage with multimegahertz pulse repetition rates and coherence properties akin to those of frequency combs. Here we review the coming of age of this technology and its recent applications and prospects, including precision frequency-comb spectroscopy of electronic and potentially nuclear transitions, and low-space-charge attosecond-temporal-resolution photoelectron spectroscopy with nearly 100% temporal detection duty cycle.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).
Reichert, J., Holzwarth, R., Udem, T. H. & Hänsch, T. W. Measuring the frequency of light with mode-locked lasers. Opt. Commun. 172, 59–68 (1999).
Telle, H. R. et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).
Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740–743 (2000).
Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).
Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).
Agostini, P., Fabre, F., Mainfray, G., Petite, G. & Rahman, N. K. Free–free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127–1130 (1979).
Macklin, J. J., Kmetec, J. D. & Gordon, C. L. High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766–769 (1993).
Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).
Lewenstein, M. et al. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).
Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).
Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).
Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).
Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).
Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).
Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).
Schell, F. et al. Molecular orbital imprint in laser-driven electron recollision. Sci. Adv. 4, eaap8148 (2018).
Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).
Locher, R. et al. Energy-dependent photoemission delays from noble metal surfaces by attosecond interferometry. Optica 2, 405–410 (2015).
Chen, C. et al. Distinguishing attosecond electron–electron scattering and screening in transition metals. Proc. Natl Acad. Sci. USA 114, E5300–E5307 (2017).
Ambrosio, M. J. & Thumm, U. Electronic structure effects in spatiotemporally resolved photoemission interferograms of copper surfaces. Phys. Rev. A 96, 051403 (2017).
Tao, Z. et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353, 62–67 (2016).
Stockman, M. I., Kling, M. F., Kleineberg, U. & Krausz, F. Attosecond nanoplasmonic-field microscope. Nat. Photon. 1, 539–544 (2007).
Förg, B. et al. Attosecond nanoscale near-field sampling. Nat. Commun. 7, 11717 (2016).
Chew, S. H. et al. Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses. Appl. Phys. Lett. 100, 051904 (2012).
Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).
Ye, J. & Cundiff, S. T. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2005).
Riehle, F., Gill, P., Arias, F. & Robertsson, L. The CIPM list of recommended frequency standard values: guidelines and procedures. Metrologia 55, 188–200 (2018).
Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).
Marian, A., Stowe, M. C., Lawall, J. R., Felinto, D. & Ye, J. United time-frequency spectroscopy for dynamics and global structure. Science 306, 2063–2068 (2004).
Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).
Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).
Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).
Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).
Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon. 8, 530–536 (2014).
Jones, R. J. & Ye, J. Femtosecond pulse amplification by coherent addition in a passive optical cavity. Opt. Lett. 27, 1848–1850 (2002).
Jones, R. J. & Ye, J. High-repetition-rate coherent femtosecond pulse amplification with an external passive optical cavity. Opt. Lett. 29, 2812–2814 (2004).
Mills, A. K., Hammond, T. J., Lam, M. H. C. & Jones, D. J. XUV frequency combs via femtosecond enhancement cavities. J. Phys. B 45, 142001 (2012).
Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).
Ozawa, A. & Kobayashi, Y. vuv frequency-comb spectroscopy of atomic xenon. Phys. Rev. A 87, 022507 (2013).
Mills, A. K. et al. An XUV source using a femtosecond enhancement cavity for photoemission spectroscopy. Proc. SPIE 9512, 95121I (2015).
Mills, A. K. et al. Cavity-enhanced high harmonic generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 90, 083001 (2019).
Corder, C. et al. Ultrafast extreme ultraviolet photoemission without space charge. Struct. Dyn. 5, 054301 (2018).
Saule, T. et al. High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate. Nat. Commun. 10, 458 (2019).
Siegman, A. E. Lasers (University Science Books, 1986).
Thorpe, M. J., Jones, R. J., Moll, K. D., Ye, J. & Lalezari, R. Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs. Opt. Express 13, 882–888 (2005).
Ozawa, A. et al. High harmonic frequency combs for high resolution spectroscopy. Phys. Rev. Lett. 100, 253901 (2008).
Lee, J., Carlson, D. R. & Jones, R. J. Optimizing intracavity high harmonic generation for XUV fs frequency combs. Opt. Express 19, 23315–23326 (2011).
Hartl, I. et al. Cavity-enhanced similariton Yb-fiber laser frequency comb: 3 × 1014 W/cm2 peak intensity at 136 MHz. Opt. Lett. 32, 2870–2872 (2007).
Eidam, T., Röser, F., Schmidt, O., Limpert, J. & Tünnermann, A. 57 W, 27 fs pulses from a fiber laser system using nonlinear compression. Appl. Phys. B 92, 9 (2008).
Porat, G. et al. Phase-matched extreme-ultraviolet frequency-comb generation. Nat. Photon. 12, 387–391 (2018).
Pupeza, I. et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nat. Photon. 7, 608–612 (2013).
Ozawa, A., Zhao, Z., Kuwata-Gonokami, M. & Kobayashi, Y. High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation. Opt. Express 23, 15107–15118 (2015).
Carstens, H. et al. High-harmonic generation at 250 MHz with photon energies exceeding 100 eV. Optica 3, 366–369 (2016).
Carstens, H. et al. Megawatt-scale average-power ultrashort pulses in an enhancement cavity. Opt. Lett. 39, 2595–2598 (2014).
Carstens, H. et al. Large-mode enhancement cavities. Opt. Express 21, 11606–11617 (2013).
Lilienfein, N. et al. Enhancement cavities for few-cycle pulses. Opt. Lett. 42, 271–274 (2017).
Jones, R. J., Thomann, I. & Ye, J. Precision stabilization of femtosecond lasers to high-finesse optical cavities. Phys. Rev. A 69, 051803 (2004).
Schliesser, A., Gohle, C., Udem, T. & Hänsch, T. W. Complete characterization of a broadband high-finesse cavity using an optical frequency comb. Opt. Express 14, 5975–5983 (2006).
Pupeza, I. et al. Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry. Opt. Express 18 26184–26195 (2010).
Hammond, T. J., Mills, A. K. & Jones, D. J. Simple method to determine dispersion of high-finesse optical cavities. Opt. Express 17, 8998–9005 (2009).
Holzberger, S. et al. Femtosecond enhancement cavities in the nonlinear regime. Phys. Rev. Lett. 115, 023902 (2015).
Högner, M. et al. Cavity-enhanced noncollinear high-harmonic generation. Opt. Express 27, 19675–19691 (2019).
Holzberger, S. et al. Enhancement cavities for zero-offset-frequency pulse trains. Opt. Lett. 40, 2165–2168 (2015).
Yost, D. C. et al. Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Opt. Express 19, 23483–23493 (2011).
Hammond, T. J., Mills, A. K. & Jones, D. J. Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield. Opt. Express 19, 24871–24883 (2011).
Moll, K. D., Jones, R. J. & Ye, J. Nonlinear dynamics inside femtosecond enhancement cavities. Opt. Express 13, 1672–1678 (2005).
Allison, T. K., Cingöz, A., Yost, D. C. & Ye, J. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011).
Carlson, D. R., Lee, J., Mongelli, J., Wright, E. M. & Jones, R. J. Intracavity ionization and pulse formation in femtosecond enhancement cavities. Opt. Lett. 36, 2991–2993 (2011).
Lilienfein, N. et al. Temporal solitons in free-space femtosecond enhancement cavities. Nat. Photon. 13, 214–218 (2019).
Kalashnikov, V. L., Gohle, C. & Udem, T. Maximization of the ultrashort pulse power stored in a passive resonator synchronously pumped by a femtosecond oscillator. In Advanced Solid-State Photonics, Technical Digest 652–656 (Optical Society of America, 2005); https://doi.org/10.1364/ASSP.2005.MB2
Moll, K. D., Jones, R. J. & Ye, J. Output coupling methods for cavity-based high-harmonic generation. Opt. Express 14, 8189–8197 (2006).
Yost, D. C., Schibli, T. R. & Ye, J. Efficient output coupling of intracavity high-harmonic generation. Opt. Lett. 33, 1099–1101 (2008).
Högner, M., Saule, T. & Pupeza, I. Efficiency of cavity-enhanced high harmonic generation with geometric output coupling. J. Phys. B 52, 075401 (2019).
Pupeza, I. et al. Cavity-enhanced high-harmonic generation with spatially tailored driving fields. Phys. Rev. Lett. 112, 103902 (2014).
Zhang, C. et al. Noncollinear enhancement cavity for record-high out-coupling efficiency of an extreme-UV frequency comb. Phys. Rev. Lett. 125, 093902 (2020).
Putnam, W. P., Schimpf, D. N., Abram, G. & Kärtner, F. X. Bessel–Gauss beam enhancement cavities for high-intensity applications. Opt. Express 20, 24429–24443 (2012).
Pronin, O. et al. Ultrabroadband efficient intracavity XUV output coupler. Opt. Express 19, 10232–10240 (2011).
Pupeza, I., Fill, E. E. & Krausz, F. Low-loss VIS/IR-XUV beam splitter for high-power applications. Opt. Express 19, 12108–12118 (2011).
Jones, R. J. & Diels, J.-C. Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis. Phys. Rev. Lett. 86, 3288–3291 (2001).
Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).
Schibli, T. R. et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nat. Photon. 2, 355–359 (2008).
Li, X. et al. High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools. Rev. Sci. Instrum. 87, 093114 (2016).
Yost, D. C. et al. Vacuum-ultraviolet frequency combs from below-threshold harmonics. Nat. Phys. 5, 815–820 (2009).
Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).
Bergeson, S. D. et al. Measurement of the He ground state lamb shift via the two-photon 11S−21S transition. Phys. Rev. Lett. 80, 3475–3478 (1998).
Eyler, E. E. et al. Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy. Eur. Phys. J. D 48, 43–55 (2008).
Herrmann, M. et al. Feasibility of coherent xuv spectroscopy on the 1S−2S transition in singly ionized helium. Phys. Rev. A 79, 052505 (2009).
Nauta, J. et al. Towards precision measurements on highly charged ions using a high harmonic generation frequency comb. Nucl. Instrum. Methods Phys. Res. B 408, 285–288 (2017).
von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020).
Ye, J., Ma, L. S. & Hall, J. L. Molecular iodine clock. Phys. Rev. Lett. 87, 270801 (2001).
von der Wense, L. & Zhang, C. Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock. Eur. Phys. J. D 74, 146 (2020).
Hellmann, S., Rossnagel, K., Marczynski-Bühlow, M. & Kipp, L. Vacuum space-charge effects in solid-state photoemission. Phys. Rev. B 79, 035402 (2009).
Buckanie, N. M. et al. Space charge effects in photoemission electron microscopy using amplified femtosecond laser pulses. J. Phys. Condens. Matter 21, 314003 (2009).
Yamamoto, S. & Matsuda, I. Time-resolved photoelectron spectroscopies using synchrotron radiation: past, present, and future. J. Phys. Soc. Jpn 82, 021003 (2013).
Na, M. X. et al. Direct determination of mode-projected electron–phonon coupling in the time domain. Science 366, 1231–1236 (2019).
Iwasawa, H. et al. Rotatable high-resolution ARPES system for tunable linear-polarization geometry. J. Synchrotron Radiat. 24, 836–841 (2017).
Kraus, P. M., Zürch, M., Cushing, S. K., Neumark, D. M. & Leone, S. R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2, 82–94 (2018).
Schoetz, J. et al. Perspective on petahertz electronics and attosecond nanoscopy. ACS Photon. 6, 3057–3069 (2019).
Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).
Muller, H. G. Reconstruction of attosecond harmonic beating by interference of two-photon transitions. Appl. Phys. B 74, s17–s21 (2002).
Isinger, M. et al. Photoionization in the time and frequency domain. Science 358, 893–896 (2017).
Högner, M., Tosa, V. & Pupeza, I. Generation of isolated attosecond pulses with enhancement cavities—a theoretical study. New J. Phys. 19, 033040 (2017).
Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181–186 (2003).
Berengut, J. C. & Flambaum, V. V. Testing time-variation of fundamental constants using a 229Th nuclear clock. Nucl. Phys. News 20, 19–22 (2010).
Cilento, F. et al. Dynamics of correlation-frozen antinodal quasiparticles in superconducting cuprates. Sci. Adv. 4, eaar1998 (2018).
Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490–493 (2011).
Boschini, F. et al. Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence. Nat. Mater. 17, 416–420 (2018).
Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photon. 8, 205–213 (2014).
Geneaux, R., Marroux, H. J. B., Guggenmos, A., Neumark, D. M. & Leone, S. R. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. Phil. Trans. R. Soc. A 377, 20170463 (2019).
Marangos, J. P. Development of high harmonic generation spectroscopy of organic molecules and biomolecules. J. Phys. B 49, 132001 (2016).
Rothhardt, J., Tadesse, G. K., Eschen, W. & Limpert, J. Table-top nanoscale coherent imaging with XUV light. J. Opt. 20, 113001 (2018).
Gaida, C. et al. High-power frequency comb at 2 μm wavelength emitted by a Tm-doped fiber laser system. Opt. Lett. 43, 5178–5181 (2018).
Scoles, G. et al. Atomic and Molecular Beam Methods Vol. I (Oxford Univ. Press, 1988).
Takahashi, E. J., Nabekawa, Y. & Midorikawa, K. Low-divergence coherent soft X-ray source at 13nm by high-order harmonics. Appl. Phys. Lett. 84, 4–6 (2004).
Takahashi, E. J. et al. Generation of strong optical field in soft X-ray region by using high-order harmonics. IEEE J. Sel. Top. Quantum Electron. 10, 1315–1328 (2004).
Constant, E. et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82, 1668–1671 (1999).
Ding, C. et al. High flux coherent super-continuum soft X-ray source driven by a single-stage, 10mJ, Ti:sapphire amplifier-pumped OPA. Opt. Express 22, 6194–6202 (2014).
Lorek, E. et al. High-order harmonic generation using a high-repetition-rate turnkey laser. Rev. Sci. Instrum. 85, 123106 (2014).
Rothhardt, J. et al. High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules. Opt. Express 24, 18133–18147 (2016).
Klas, R. et al. Table-top milliwatt-class extreme ultraviolet high harmonic light source. Optica 3, 1167–1170 (2016).
Rothhardt, J. et al. 53W average power few-cycle fiber laser system generating soft X rays up to the water window. Opt. Lett. 39, 5224–5227 (2014).
Rothhardt, J. et al. Absorption-limited and phase-matched high harmonic generation in the tight focusing regime. New J. Phys. 16, 033022 (2014).
Puppin, M. et al. Time- and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate. Rev. Sci. Instrum. 90, 023104 (2019).
Hädrich, S. et al. High photon flux table-top coherent extreme-ultraviolet source. Nat. Photon. 8, 779–783 (2014).
Chiang, C.-T. et al. Boosting laboratory photoelectron spectroscopy by megahertz high-order harmonics. New J. Phys. 17, 013035 (2015).
Zhao, Z. & Kobayashi, Y. Realization of a mW-level 10.7-eV (λ=115.6nm) laser by cascaded third harmonic generation of a Yb:fiber CPA laser at 1-MHz. Opt. Express 25, 13517–13526 (2017).
Emaury, F., Diebold, A., Saraceno, C. J. & Keller, U. Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator. Optica 2, 980–984 (2015).
Hädrich, S. et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light Sci. Appl. 4, e320–e320 (2015).
Vernaleken, A. et al. Single-pass high-harmonic generation at 20.8MHz repetition rate. Opt. Lett. 36, 3428–3430 (2011).
Bernhardt, B. et al. Vacuum ultraviolet frequency combs generated by a femtosecond enhancement cavity in the visible. Opt. Lett. 37, 503–505 (2012).
Penetrante, B. M., Wood, W. M., Siders, C. W., Bardsley, J. N. & Downer, M. C. Ionization-induced frequency shifts in intense femtosecond laser pulses. J. Opt. Soc. Am. B 9, 2032–2040 (1992).
Acknowledgements
We thank C. Benko, J. Weitenberg, M. Weidman and L. von der Wense for valuable discussions.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pupeza, I., Zhang, C., Högner, M. et al. Extreme-ultraviolet frequency combs for precision metrology and attosecond science. Nat. Photonics 15, 175–186 (2021). https://doi.org/10.1038/s41566-020-00741-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-020-00741-3
This article is cited by
-
Near-ultraviolet photon-counting dual-comb spectroscopy
Nature (2024)
-
Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock
Nature (2024)
-
Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides
Nature Photonics (2024)
-
Flexural–torsional modal interaction in MEMS actuators initiated by minuscule asymmetry
Nonlinear Dynamics (2024)
-
Reliable determination of pulse-shape instability in trains of ultrashort laser pulses using frequency-resolved optical gating
Scientific Reports (2022)