Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photonic crystal optical parametric oscillator

Abstract

We report a new class of optical parametric oscillators, based on a 20-μm-long semiconductor photonic crystal cavity and operating at telecom wavelengths. Because the confinement results from Bragg scattering, the optical cavity contains a few modes, approximately equispaced in frequency. Parametric oscillation is reached when these high-quality-factor modes are thermally tuned into a triply resonant configuration, whereas any other parametric interaction is strongly suppressed. The lowest pump power threshold is estimated to be 50–70 μW. This source behaves as an ideal degenerate optical parametric oscillator, addressing the needs in the field of quantum optical circuits and paving the way towards the dense integration of highly efficient nonlinear sources of squeezed light or entangled photons pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Triply resonant PhC cavity.
Fig. 2: Stimulated FWM.
Fig. 3: Parametric oscillation.

Similar content being viewed by others

References

  1. Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    ADS  Google Scholar 

  2. Feldmann, J., Youngblood, N., Wright, C., Bhaskaran, H. & Pernice, W. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    ADS  Google Scholar 

  3. Estevez, M. C., Alvarez, M. & Lechuga, L. M. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon. Rev. 6, 463–487 (2012).

    ADS  Google Scholar 

  4. Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).

    Google Scholar 

  5. Akahane, Y., Asano, T., Song, B.-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    ADS  Google Scholar 

  6. Asano, T., Ochi, Y., Takahashi, Y., Kishimoto, K. & Noda, S. Photonic crystal nanocavity with a Q factor exceeding eleven million. Opt. Express 25, 1769–1777 (2017).

    ADS  Google Scholar 

  7. Nozaki, K. et al. Femtofarad optoelectronic integration demonstrating energy-saving signal conversion and nonlinear functions. Nat. Photon. 13, 454–459 (2019).

    ADS  Google Scholar 

  8. Crosnier, G. et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nat. Photon. 11, 297–301 (2017).

    ADS  Google Scholar 

  9. Takahashi, Y. et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498, 470–474 (2013).

    ADS  Google Scholar 

  10. Nozaki, K. et al. Ultralow-power all-optical RAM based on nanocavities. Nat. Photon. 6, 248–252 (2012).

    ADS  Google Scholar 

  11. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    ADS  MathSciNet  Google Scholar 

  12. Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

    ADS  Google Scholar 

  13. Morin, O., D’Auria, V., Fabre, C. & Laurat, J. High-fidelity single-photon source based on a type II optical parametric oscillator. Opt. Lett. 37, 3738–3740 (2012).

    ADS  Google Scholar 

  14. Morin, O. et al. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photon. 8, 570–574 (2014).

    ADS  Google Scholar 

  15. Inagaki, T. et al. Large-scale Ising spin network based on degenerate optical parametric oscillators. Nat. Photon. 10, 415–419 (2016).

    ADS  Google Scholar 

  16. Kippenberg, T., Spillane, S. & Vahala, K. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    ADS  Google Scholar 

  17. Grudinin, I. S. et al. Ultra high Q crystalline microcavities. Opt. Commun. 265, 33–38 (2006).

    ADS  Google Scholar 

  18. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–406 (2018).

    ADS  Google Scholar 

  19. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    ADS  Google Scholar 

  20. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Google Scholar 

  21. Lu, X. et al. Milliwatt-threshold visible–telecom optical parametric oscillation using silicon nanophotonics. Optica 6, 1535–1541 (2019).

    ADS  Google Scholar 

  22. Sayson, N. L. B. et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nat. Photon. 13, 701–706 (2019).

    ADS  Google Scholar 

  23. Tang, Y., Gong, Z., Liu, X. & Tang, H. X. Widely separated optical Kerr parametric oscillation in AlN microrings. Opt. Lett. 45, 1124–1127 (2020).

    ADS  Google Scholar 

  24. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    ADS  Google Scholar 

  25. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Google Scholar 

  26. Matsko, A. B., Savchenkov, A. A., Strekalov, D., Ilchenko, V. S. & Maleki, L. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion. Phys. Rev. A 71, 033804 (2005).

    ADS  Google Scholar 

  27. Conti, C., Di Falco, A. & Assanto, G. Optical parametric oscillations in isotropic photonic crystals. Opt. Express 12, 823–828 (2004).

    ADS  Google Scholar 

  28. Ramirez, D. M. et al. Degenerate four-wave mixing in triply resonant Kerr cavities. Phys. Rev. A 83, 033834 (2011).

    ADS  Google Scholar 

  29. Azzini, S. et al. Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities. Appl. Phys. Lett. 103, 031117 (2013).

    ADS  Google Scholar 

  30. Matsuda, N., Kuramochi, E., Takesue, H., Shimizu, K. & Notomi, M. Resonant photon pair generation in coupled silicon photonic crystal nanocavities. In The European Conference on Lasers and Electro-Optics CK_8_4 (Optical Society of America, 2017).

  31. Taguchi, Y., Takahashi, Y., Sato, Y., Asano, T. & Noda, S. Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million. Opt. Express 19, 11916 (2011).

    ADS  Google Scholar 

  32. Colman, P. et al. Temporal solitons and pulse compression in photonic crystal waveguides. Nat. Photon. 4, 862–868 (2010).

    ADS  Google Scholar 

  33. Combrié, S., Lehoucq, G., Moille, G., Martin, A. & De Rossi, A. Comb of high-Q resonances in a compact photonic cavity. Laser Photon. Rev. 11, 1700099 (2017).

    ADS  Google Scholar 

  34. Alpeggiani, F., Andreani, L. C. & Gerace, D. Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities. Appl. Phys. Lett. 107, 261110 (2015).

    ADS  Google Scholar 

  35. Tran, Q. V., Combrié, S., Colman, P. & De Rossi, A. Photonic crystal membrane waveguides with low insertion losses. Appl. Phys. Lett. 95, 061105 (2009).

    ADS  Google Scholar 

  36. Miller, S. A. et al. Tunable frequency combs based on dual microring resonators. Opt. Express 23, 21527–21540 (2015).

    ADS  Google Scholar 

  37. Yüce, E. et al. Adaptive control of necklace states in a photonic crystal waveguide. ACS Photon. 5, 3984–3988 (2018).

    Google Scholar 

  38. Zhang, Y. et al. Squeezed light from a nanophotonic molecule. Preprint at https://arxiv.org/abs/2001.09474 (2020).

  39. Chang, L. et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun. 11, 1331 (2020).

    ADS  Google Scholar 

  40. Fürst, J. et al. Low-threshold optical parametric oscillations in a whispering gallery mode resonator. Phys. Rev. Lett. 105, 263904 (2010).

    ADS  Google Scholar 

  41. Bruch, A. W., Liu, X., Surya, J. B., Zou, C.-L. & Tang, H. X. On-chip χ(2) microring optical parametric oscillator. Optica 6, 1361–1366 (2019).

    ADS  Google Scholar 

  42. Zhao, Y. et al. Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett. 124, 193601 (2020).

    ADS  Google Scholar 

  43. Vernon, Z. et al. Scalable squeezed-light source for continuous-variable quantum sampling. Phys. Rev. Appl. 12, 064024 (2019).

    ADS  Google Scholar 

  44. Dutt, A. et al. On-chip optical squeezing. Phys. Rev. Appl. 3, 044005 (2015).

    ADS  Google Scholar 

  45. Okawachi, Y. et al. Demonstration of chip-based coupled degenerate optical parametric oscillators for realizing a nanophotonic spin-glass. Nat. Commun. 11, 4119 (2020).

    ADS  Google Scholar 

  46. Matsko, A. B. Hyperparametric frequency noise eater. Phys. Rev. A 99, 023843 (2019).

    ADS  Google Scholar 

  47. Lu, X. et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373–381 (2019).

    Google Scholar 

  48. Clementi, M., Barone, A., Fromherz, T., Gerace, D. & Galli, M. Selective tuning of optical modes in a silicon comb-like photonic crystal cavity. Nanophotonics 1, 205–210 (2019).

    Google Scholar 

  49. Marty, G., Combrié, S., De Rossi, A. & Raineri, F. Hybrid InGaP nanobeam on silicon photonics for efficient four wave mixing. APL Photon. 4, 120801 (2019).

    ADS  Google Scholar 

  50. Combrié, S., Tran, Q. V., De Rossi, A., Husko, C. & Colman, P. High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption. Appl. Phys. Lett. 95, 221108 (2009).

    ADS  Google Scholar 

  51. Ghorbel, I. et al. Optomechanical gigahertz oscillator made of a two photon absorption free piezoelectric III/V semiconductor. APL Photon. 4, 116103 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Lehouc, S. Xavier and O. Parillaud for contributing to the InGaP PhC technology, I. Ghorbel for assistance with the experiments, and G. Moille, C. de Angelis, T. Debuisschert, E. Lallier, A. Brignon and A. Martin for fruitful and insightful discussions. This work is supported by a public grant overseen by the French National Agency (ANR) as part of the ‘Investissements d’Avenir’ programme (Labex NanoSaclay reference ANR-10-LABX-0035). This work has also received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the European Research Council (ERC) project HYPNOTIC (grant agreement number 726420) and the Marie Skłodowska-Curie project MOCCA (grant agreement number 814147).

Author information

Authors and Affiliations

Authors

Contributions

S.C. and G.M. equally contributed to the measurements. F.R. and S.C. developed the technology. A.D.R. and G.M. analysed the results, A.D.R. developed the theory. All the authors contributed to writing the manuscript.

Corresponding author

Correspondence to Alfredo De Rossi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Triply-resonant Cavity.

a: Representation of a resonator coupled to a single- ended waveguide in the time-dependent coupled mode theory with definition of field in the waveguide s and in the cavity a, internal Γ abs and radiation loss Γ rad and waveguide coupling k; b angular frequencies ω for the normal mode and excitation waves, ‘cold’ resonances ω and detuning δ. c Linear scattering spectrum measured using OCT revealing the ω ± and ω0 modes d and corresponding calculated modes.

Extended Data Fig. 2 Thermo-Optic Tuning.

Description of the tuning measurement, with a pump pulling mode ω0 and detecting all the resonances a; calculated profile of the temperature (solid filled) and the dissipated energy (dashed) b and corresponding 2D map c; measured spectral shift as a function of the energy stored in the mode (markers) and fit; d estimated absorption rate including nonlinear absorption e.

Extended Data Fig. 3 Reflectivity Measurement and Model.

Linear spectral characterization of a resonator using OCT. a Extracted temporal trace revealing a narrow peak (refection from the end facet) and a broad dispersive peak (reflection from the cavity); b corresponding spectrum superimposed with the measurement of the reflection using a direct (non heterodyne) detection; c model representing reflection at the PhC coupler (=waveguide end facet) and from the cavity; d fitted reflection from cavity 5 and e cavity 7 from which the coupling factor K is extracted.

Extended Data Fig. 4 Measured Stimulated FWM efficiency vs. Theory.

Measurement of the stimulated FWM efficiency ηχ as a function of the pump offset 0 and probe detuning δ -; the corresponding measured FSR is in the inset a; comparison with the model (inset with colored frame); b max(ηχ) as a function of the pump offset, experiment (symbols) and theory (solid line).

Extended Data Fig. 5 Calibration of the OPO measurement.

OPO measurement on cavity a5. a on-chip power in the sidebands as a function of the effective pump power Pc,0 (note that the idler ωX is rescaled); b corresponding reflected pump power and calculated reflection when the pump is off- resonance (solid line), on chip pump power is 72 μW. Same horizontal axis.

Extended Data Fig. 6 OPO threshold.

OPO pump threshold as a function of the Q factor compared with the state of the art in microring and racetrack resonators made of different materials. Details and references are in the Supplementary Table IV.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Discussion, equations, Tables I–IV and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marty, G., Combrié, S., Raineri, F. et al. Photonic crystal optical parametric oscillator. Nat. Photonics 15, 53–58 (2021). https://doi.org/10.1038/s41566-020-00737-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-00737-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing