Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transverse spinning of unpolarized light


It is well known that the spin angular momentum of light, and therefore that of photons, is directly related to their circular polarization. Naturally, for totally unpolarized light, polarization is undefined and the spin vanishes. However, for non-paraxial light, the recently discovered transverse spin component, orthogonal to the main propagation direction, is largely independent of the polarization state of the wave. Here, we demonstrate, both theoretically and experimentally, that this transverse spin survives even in non-paraxial fields (for example, focused or evanescent) generated from totally unpolarized paraxial light. This counterintuitive phenomenon is closely related to the fundamental difference between the meanings of ‘full depolarization’ for two-dimensional (2D) paraxial and 3D non-paraxial fields. Our results open an avenue for studies of spin-related phenomena and optical manipulation using unpolarized light.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Spin and polarization in paraxial and non-paraxial fields.
Fig. 2: Focused-beam experiment.
Fig. 3: Evanescent-wave experiment.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The codes that support the calculations and plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Azzam, R. M. A. & Bashara, N. M. Ellipsometry and Polarized Light (North-Holland, 1977).

  2. 2.

    Berestetskii, V. B., Lifshitz, E. M. & Pitaevskii, L. P. Quantum Electrodynamics (Pergamon, 1982).

  3. 3.

    Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2012).

  4. 4.

    Carozzi, T., Karlsson, R. & Bergman, J. Parameters characterizing electromagnetic wave polarization. Phys. Rev. E 61, 2024–2028 (2000).

    ADS  Google Scholar 

  5. 5.

    Setälä, T., Shevchenko, A., Kaivola, M. & Friberg, A. T. Degree of polarization for optical near fields. Phys. Rev. E 66, 016615 (2002).

    ADS  Google Scholar 

  6. 6.

    Dennis, M. R. Geometric interpretation of the three-dimensional coherence matrix for nonparaxial polarization. J. Opt. A Pure Appl. Opt. 6, S26–S31 (2004).

    ADS  Google Scholar 

  7. 7.

    Ellis, J. & Dogariu, A. Optical polarimetry of random fields. Phys. Rev. Lett. 95, 203905 (2005).

    ADS  Google Scholar 

  8. 8.

    Gil, J. J. Polarimetric characterization of light and media. Eur. Phys. J. Appl. Phys. 40, 1–47 (2007).

    ADS  Google Scholar 

  9. 9.

    Sheppard, C. J. R. Jones and Stokes parameters for polarization in three dimensions. Phys. Rev. A 90, 023809 (2014).

    ADS  Google Scholar 

  10. 10.

    Brosseau, C. & Dogariu, A. Symmetry properties and polarization descriptors for an arbitrary electromagnetic wavefield. Prog. Opt. 49, 315–380 (2006).

    ADS  Google Scholar 

  11. 11.

    Petruccelli, J. C., Moore, N. J. & Alonso, M. A. Two methods for modeling the propagation of the coherence and polarization properties of nonparaxial fields. Opt. Commun. 283, 4457–4466 (2010).

    ADS  Google Scholar 

  12. 12.

    Alonso, M. A. Geometric descriptions for the polarization for nonparaxial optical fields: a tutorial. Preprint at (2020).

  13. 13.

    Enk, S. Jvan & Nienhuis, G. Spin and orbital angular momentum of photons. Europhys. Lett. 25, 497–501 (1994).

    ADS  Google Scholar 

  14. 14.

    Berry, M. V. & Dennis, M. R. Polarization singularities in isotropic random vector waves. Proc. R. Soc. Lond. A 457, 141–155 (2001).

    ADS  MathSciNet  MATH  Google Scholar 

  15. 15.

    Bliokh, K. Y., Alonso, M. A., Ostrovskaya, E. A. & Aiello, A. Angular momenta and spin–orbit interaction of nonparaxial light in free space. Phys. Rev. A 82, 063825 (2010).

    ADS  Google Scholar 

  16. 16.

    Cameron, R. P., Barnett, S. M. & Yao, A. M. Optical helicity, optical spin and related quantities in electromagnetic theory. New J. Phys. 14, 053050 (2012).

    ADS  MATH  Google Scholar 

  17. 17.

    Bliokh, K. Y. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  18. 18.

    Bliokh, K. Y. & Nori, F. Transverse spin of a surface polariton. Phys. Rev. A 85, 061801 (2012).

    ADS  Google Scholar 

  19. 19.

    Banzer, P. et al. The photonic wheel—demonstration of a state of light with purely transverse angular momentum. J. Eur. Opt. Soc. 8, 13032 (2013).

    Google Scholar 

  20. 20.

    Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014).

    ADS  Google Scholar 

  21. 21.

    Canaguier-Durand, A. & Genet, C. Transverse spinning of a sphere in a plasmonic field. Phys. Rev. A 89, 033841 (2014).

    ADS  Google Scholar 

  22. 22.

    Neugebauer, M., Bauer, T., Banzer, P. & Leuchs, G. Polarization tailored light driven directional optical nanobeacon. Nano Lett. 14, 2546–2551 (2014).

    ADS  Google Scholar 

  23. 23.

    Rodríguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013).

    ADS  Google Scholar 

  24. 24.

    Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin–orbit interaction of light. Science 346, 67–71 (2014).

    ADS  Google Scholar 

  25. 25.

    O’Connor, D. et al. Spin–orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun. 5, 5327 (2014).

    ADS  Google Scholar 

  26. 26.

    Neugebauer, M., Bauer, T., Aiello, A. & Banzer, P. Measuring the transverse spin density of light. Phys. Rev. Lett. 114, 063901 (2015).

    ADS  Google Scholar 

  27. 27.

    le Feber, B., Rotenberg, N. & Kuipers, L. Nanophotonic control of circular dipole emission. Nat. Commun. 6, 6695 (2015).

    ADS  Google Scholar 

  28. 28.

    Lefier, Y. & Grosjean, T. Unidirectional sub-diffraction waveguiding based on optical spin–orbit coupling in subwavelength plasmonic waveguides. Opt. Lett. 40, 2890–2893 (2015).

    Google Scholar 

  29. 29.

    Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  30. 30.

    Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015).

    Google Scholar 

  31. 31.

    Bauer, T., Neugebauer, M., Leuchs, G. & Banzer, P. Optical polarization Möbius strips and points of purely transverse spin density. Phys. Rev. Lett. 117, 013601 (2016).

    ADS  Google Scholar 

  32. 32.

    Neugebauer, M., Eismann, J. S., Bauer, T. & Banzer, P. Magnetic and electric transverse spin density of spatially confined light. Phys. Rev. X 8, 021042 (2018).

    Google Scholar 

  33. 33.

    Aiello, A., Banzer, P., Neugebauer, M. & Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photon. 9, 789–795 (2015).

    ADS  Google Scholar 

  34. 34.

    Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    ADS  Google Scholar 

  35. 35.

    Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    ADS  Google Scholar 

  36. 36.

    Shi, C. et al. Observation of acoustic spin. Natl Sci. Rev. 6, 707–712 (2019).

    ADS  Google Scholar 

  37. 37.

    Bliokh, K. Y. & Nori, F. Spin and orbital angular momenta of acoustic beams. Phys. Rev. B 99, 174310 (2019).

    ADS  Google Scholar 

  38. 38.

    Toftul, I. D., Bliokh, K. Y., Petrov, M. I. & Nori, F. Acoustic radiation force and torque on small particles as measures of the canonical momentum and spin densities. Phys. Rev. Lett. 123, 183901 (2019).

    ADS  Google Scholar 

  39. 39.

    Golat, S., Lim, E. A. & Rodríguez-Fortuño, F. J. Evanescent gravitational waves. Phys. Rev. D 101, 084046 (2020).

    ADS  MathSciNet  Google Scholar 

  40. 40.

    Lindfors, K., Friberg, A. T., Setälä, T. & Kaivola, M. Degree of polarization in tightly focused optical fields. J. Opt. Soc. Am. A 22, 561–568 (2005).

    Google Scholar 

  41. 41.

    Lindfors, K. et al. Local polarization of tightly focused unpolarized light. Nat. Photon. 1, 228–231 (2007).

    ADS  Google Scholar 

  42. 42.

    Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phys. 15, 033026 (2013).

    ADS  MATH  Google Scholar 

  43. 43.

    Banzer, P., Peschel, U., Quabis, S. & Leuchs, G. On the experimental investigation of the electric and magnetic response of a single nano-structure. Opt. Express 18, 10905–10923 (2010).

    Google Scholar 

  44. 44.

    Richards, B. & Wolf, E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A 253, 358–379 (1959).

    ADS  MATH  Google Scholar 

  45. 45.

    Eismann, J. S., Banzer, P. & Neugebauer, M. Spin–orbit coupling affecting the evolution of transverse spin. Phys. Rev. Res. 1, 033143 (2019).

    Google Scholar 

Download references


We acknowledge the help of U. Mick with the fabrication of samples for the focused-beam experiment. This work was partially supported by the European Research Council (Starting Grant ERC-2016-STG-714151-PSINFONI and iCOMM project no. 789340), EPSRC (UK), the Excellence Initiative of Aix Marseille University—A*MIDEX, a French ‘Investissements d’Avenir’ programme, NTT Research, the Army Research Office (ARO; grant no. W911NF-18-1-0358), Japan Science and Technology Agency (JST; via CREST grant no. JPMJCR1676), Japan Society for the Promotion of Science (JSPS; JSPS-RFBR grant no. 17-52-50023 and KAKENHI grant no. JP20H00134), the Foundational Questions Institute Fund (FQXi; grant no. FQXi-IAF19-06) and a donor advised fund of the Silicon Valley Community Foundation.

Author information




K.Y.B. conceived the idea for this research, made theoretical calculations with input from M.A.A. and prepared the manuscript with input from all the authors. Focused-beam experiment: P.B. and J.S.E. developed the idea of the experiment; J.S.E. performed the experiment; J.S.E. and P.B. performed the data processing; J.S.E. and P.B. wrote the corresponding part of the manuscript. Evanescent-wave experiment: F.J.R.-F., D.J.R., L.H.N. and A.V.Z. developed the idea of the experiment; D.J.R. and L.H.N. designed and performed the experiment; F.J.R.-F. performed theoretical modelling; D.J.R. and F.J.R.-F. performed data processing; D.J.R. fabricated the samples; F.J.R.-F., D.J.R., L.H.N. and A.V.Z. wrote the related part of the manuscript.

Corresponding authors

Correspondence to P. Banzer, A. V. Zayats or K. Y. Bliokh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Lorenzo Marrucci and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Sections: (1) Theoretical calculations; (2) Details of the evanescent-wave experiment.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eismann, J.S., Nicholls, L.H., Roth, D.J. et al. Transverse spinning of unpolarized light. Nat. Photonics 15, 156–161 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing