Abstract
It is well known that the spin angular momentum of light, and therefore that of photons, is directly related to their circular polarization. Naturally, for totally unpolarized light, polarization is undefined and the spin vanishes. However, for non-paraxial light, the recently discovered transverse spin component, orthogonal to the main propagation direction, is largely independent of the polarization state of the wave. Here, we demonstrate, both theoretically and experimentally, that this transverse spin survives even in non-paraxial fields (for example, focused or evanescent) generated from totally unpolarized paraxial light. This counterintuitive phenomenon is closely related to the fundamental difference between the meanings of ‘full depolarization’ for two-dimensional (2D) paraxial and 3D non-paraxial fields. Our results open an avenue for studies of spin-related phenomena and optical manipulation using unpolarized light.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Time diffraction-free transverse orbital angular momentum beams
Nature Communications Open Access 11 July 2022
-
Towards higher-dimensional structured light
Light: Science & Applications Open Access 05 July 2022
-
Shifting beams at normal incidence via controlling momentum-space geometric phases
Nature Communications Open Access 18 October 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.
Code availability
The codes that support the calculations and plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.
References
Azzam, R. M. A. & Bashara, N. M. Ellipsometry and Polarized Light (North-Holland, 1977).
Berestetskii, V. B., Lifshitz, E. M. & Pitaevskii, L. P. Quantum Electrodynamics (Pergamon, 1982).
Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2012).
Carozzi, T., Karlsson, R. & Bergman, J. Parameters characterizing electromagnetic wave polarization. Phys. Rev. E 61, 2024–2028 (2000).
Setälä, T., Shevchenko, A., Kaivola, M. & Friberg, A. T. Degree of polarization for optical near fields. Phys. Rev. E 66, 016615 (2002).
Dennis, M. R. Geometric interpretation of the three-dimensional coherence matrix for nonparaxial polarization. J. Opt. A Pure Appl. Opt. 6, S26–S31 (2004).
Ellis, J. & Dogariu, A. Optical polarimetry of random fields. Phys. Rev. Lett. 95, 203905 (2005).
Gil, J. J. Polarimetric characterization of light and media. Eur. Phys. J. Appl. Phys. 40, 1–47 (2007).
Sheppard, C. J. R. Jones and Stokes parameters for polarization in three dimensions. Phys. Rev. A 90, 023809 (2014).
Brosseau, C. & Dogariu, A. Symmetry properties and polarization descriptors for an arbitrary electromagnetic wavefield. Prog. Opt. 49, 315–380 (2006).
Petruccelli, J. C., Moore, N. J. & Alonso, M. A. Two methods for modeling the propagation of the coherence and polarization properties of nonparaxial fields. Opt. Commun. 283, 4457–4466 (2010).
Alonso, M. A. Geometric descriptions for the polarization for nonparaxial optical fields: a tutorial. Preprint at https://arxiv.org/abs/2008.02720 (2020).
Enk, S. Jvan & Nienhuis, G. Spin and orbital angular momentum of photons. Europhys. Lett. 25, 497–501 (1994).
Berry, M. V. & Dennis, M. R. Polarization singularities in isotropic random vector waves. Proc. R. Soc. Lond. A 457, 141–155 (2001).
Bliokh, K. Y., Alonso, M. A., Ostrovskaya, E. A. & Aiello, A. Angular momenta and spin–orbit interaction of nonparaxial light in free space. Phys. Rev. A 82, 063825 (2010).
Cameron, R. P., Barnett, S. M. & Yao, A. M. Optical helicity, optical spin and related quantities in electromagnetic theory. New J. Phys. 14, 053050 (2012).
Bliokh, K. Y. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015).
Bliokh, K. Y. & Nori, F. Transverse spin of a surface polariton. Phys. Rev. A 85, 061801 (2012).
Banzer, P. et al. The photonic wheel—demonstration of a state of light with purely transverse angular momentum. J. Eur. Opt. Soc. 8, 13032 (2013).
Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014).
Canaguier-Durand, A. & Genet, C. Transverse spinning of a sphere in a plasmonic field. Phys. Rev. A 89, 033841 (2014).
Neugebauer, M., Bauer, T., Banzer, P. & Leuchs, G. Polarization tailored light driven directional optical nanobeacon. Nano Lett. 14, 2546–2551 (2014).
Rodríguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013).
Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin–orbit interaction of light. Science 346, 67–71 (2014).
O’Connor, D. et al. Spin–orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun. 5, 5327 (2014).
Neugebauer, M., Bauer, T., Aiello, A. & Banzer, P. Measuring the transverse spin density of light. Phys. Rev. Lett. 114, 063901 (2015).
le Feber, B., Rotenberg, N. & Kuipers, L. Nanophotonic control of circular dipole emission. Nat. Commun. 6, 6695 (2015).
Lefier, Y. & Grosjean, T. Unidirectional sub-diffraction waveguiding based on optical spin–orbit coupling in subwavelength plasmonic waveguides. Opt. Lett. 40, 2890–2893 (2015).
Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015).
Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015).
Bauer, T., Neugebauer, M., Leuchs, G. & Banzer, P. Optical polarization Möbius strips and points of purely transverse spin density. Phys. Rev. Lett. 117, 013601 (2016).
Neugebauer, M., Eismann, J. S., Bauer, T. & Banzer, P. Magnetic and electric transverse spin density of spatially confined light. Phys. Rev. X 8, 021042 (2018).
Aiello, A., Banzer, P., Neugebauer, M. & Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photon. 9, 789–795 (2015).
Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).
Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).
Shi, C. et al. Observation of acoustic spin. Natl Sci. Rev. 6, 707–712 (2019).
Bliokh, K. Y. & Nori, F. Spin and orbital angular momenta of acoustic beams. Phys. Rev. B 99, 174310 (2019).
Toftul, I. D., Bliokh, K. Y., Petrov, M. I. & Nori, F. Acoustic radiation force and torque on small particles as measures of the canonical momentum and spin densities. Phys. Rev. Lett. 123, 183901 (2019).
Golat, S., Lim, E. A. & Rodríguez-Fortuño, F. J. Evanescent gravitational waves. Phys. Rev. D 101, 084046 (2020).
Lindfors, K., Friberg, A. T., Setälä, T. & Kaivola, M. Degree of polarization in tightly focused optical fields. J. Opt. Soc. Am. A 22, 561–568 (2005).
Lindfors, K. et al. Local polarization of tightly focused unpolarized light. Nat. Photon. 1, 228–231 (2007).
Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phys. 15, 033026 (2013).
Banzer, P., Peschel, U., Quabis, S. & Leuchs, G. On the experimental investigation of the electric and magnetic response of a single nano-structure. Opt. Express 18, 10905–10923 (2010).
Richards, B. & Wolf, E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A 253, 358–379 (1959).
Eismann, J. S., Banzer, P. & Neugebauer, M. Spin–orbit coupling affecting the evolution of transverse spin. Phys. Rev. Res. 1, 033143 (2019).
Acknowledgements
We acknowledge the help of U. Mick with the fabrication of samples for the focused-beam experiment. This work was partially supported by the European Research Council (Starting Grant ERC-2016-STG-714151-PSINFONI and iCOMM project no. 789340), EPSRC (UK), the Excellence Initiative of Aix Marseille University—A*MIDEX, a French ‘Investissements d’Avenir’ programme, NTT Research, the Army Research Office (ARO; grant no. W911NF-18-1-0358), Japan Science and Technology Agency (JST; via CREST grant no. JPMJCR1676), Japan Society for the Promotion of Science (JSPS; JSPS-RFBR grant no. 17-52-50023 and KAKENHI grant no. JP20H00134), the Foundational Questions Institute Fund (FQXi; grant no. FQXi-IAF19-06) and a donor advised fund of the Silicon Valley Community Foundation.
Author information
Authors and Affiliations
Contributions
K.Y.B. conceived the idea for this research, made theoretical calculations with input from M.A.A. and prepared the manuscript with input from all the authors. Focused-beam experiment: P.B. and J.S.E. developed the idea of the experiment; J.S.E. performed the experiment; J.S.E. and P.B. performed the data processing; J.S.E. and P.B. wrote the corresponding part of the manuscript. Evanescent-wave experiment: F.J.R.-F., D.J.R., L.H.N. and A.V.Z. developed the idea of the experiment; D.J.R. and L.H.N. designed and performed the experiment; F.J.R.-F. performed theoretical modelling; D.J.R. and F.J.R.-F. performed data processing; D.J.R. fabricated the samples; F.J.R.-F., D.J.R., L.H.N. and A.V.Z. wrote the related part of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Photonics thanks Lorenzo Marrucci and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary text, Sections: (1) Theoretical calculations; (2) Details of the evanescent-wave experiment.
Rights and permissions
About this article
Cite this article
Eismann, J.S., Nicholls, L.H., Roth, D.J. et al. Transverse spinning of unpolarized light. Nat. Photonics 15, 156–161 (2021). https://doi.org/10.1038/s41566-020-00733-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-020-00733-3
This article is cited by
-
Towards higher-dimensional structured light
Light: Science & Applications (2022)
-
Time diffraction-free transverse orbital angular momentum beams
Nature Communications (2022)
-
Structured light
Nature Photonics (2021)
-
Longitudinal fields and transverse rotations
Nature Photonics (2021)
-
Shifting beams at normal incidence via controlling momentum-space geometric phases
Nature Communications (2021)