Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct mapping of attosecond electron dynamics

Abstract

The subcycle interaction of light and electrons has been one of the key frontiers in free-electron lasers, attosecond science and dynamical investigation of matter. Capturing the underlying subcycle dynamics of electrons with an optical field promises fascinating vistas with unprecedented temporal resolution. Yet the rigorous synchronization requirement has kept its realization out of reach. Here, by direct spatial observation of periodic electron bunch fringes, we demonstrate a laser streaking concept for revealing the dynamics of free electrons emitted from a plasma mirror under sub-relativistic laser intensity. Field-induced electron beam deflection demonstrates subcycle charge dynamics with a streaking speed of ~60 μrad as−1. This provides us with an attosecond-resolution metrology to obtain more direct evidence about the light-field-induced electron dynamics in the plasma mirror. Our results offer unprecedented characterization of attosecond dynamics and open the way to extensive experimental investigations of the interaction of attosecond electrons with intense lasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Laser streaking of the attosecond electron pulse trains.
Fig. 2: Experimental evidence of laser streaking of attosecond electron pulse trains.
Fig. 3: Calculated phase space and angular distributions of electrons emitted from a plasma mirror with different ejection times with respect to the peak of the reflected laser pulse.
Fig. 4: Time-to-space mapping during the laser streaking of attosecond electron pulse trains.

Similar content being viewed by others

Data availability

All relevant data are available from the corresponding authors upon reasonable request.

Code availability

The codes that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Kapitza, P. L. & Dirac, P. A. M. The reflection of electrons from standing light waves. Math. Proc. Camb. Phil. Soc. 29, 297–300 (1933).

    Article  ADS  Google Scholar 

  2. Bucksbaum, P. H., Schumacher, D. W. & Bashkansky, M. High-intensity Kapitza–Dirac effect. Phys. Rev. Lett. 61, 1182–1185 (1988).

    Article  ADS  Google Scholar 

  3. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  4. Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).

    Article  ADS  Google Scholar 

  5. Sciaini, G. & Miller, R. J. D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Rep. Prog. Phys. 74, 096101 (2011).

    Article  ADS  Google Scholar 

  6. Barwick, B., Park, H. S., Kwon, O. H., Baskin, J. S. & Zewail, A. H. 4D imaging of transient structures and morphologies in ultrafast electron microscopy. Science 322, 1227–1231 (2008).

    Article  ADS  Google Scholar 

  7. Kassier, G. H. et al. A compact streak camera for 150-fs time resolved measurement of bright pulses in ultrafast electron diffraction. Rev. Sci. Instrum. 81, 105103 (2010).

    Article  ADS  Google Scholar 

  8. Kirchner, F. O., Gliserin, A., Krausz, F. & Baum, P. Laser streaking of free electrons at 25 keV. Nat. Photon. 8, 52–57 (2013).

    Article  ADS  Google Scholar 

  9. Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  10. Schlenvoigt, H. P. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4, 130–133 (2008).

    Article  Google Scholar 

  11. Niikura, H. et al. Probing molecular dynamics with attosecond resolution using correlated wave packet pairs. Nature 421, 826–829 (2003).

    Article  ADS  Google Scholar 

  12. Borot, A. et al. Attosecond control of collective electron motion in plasmas. Nat. Phys. 8, 416–421 (2012).

    Article  Google Scholar 

  13. Zewail, A. H. 4D ultrafast electron diffraction, crystallography and microscopy. Annu. Rev. Phys. Chem. 57, 65–103 (2006).

    Article  ADS  Google Scholar 

  14. Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  15. van Oudheusden, T. et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105, 264801 (2010).

    Article  ADS  Google Scholar 

  16. Maxson, J. et al. Direct measurement of sub-10-fs relativistic electron beams with ultralow emittance. Phys. Rev. Lett. 118, 154802 (2017).

    Article  ADS  Google Scholar 

  17. Hassan, M. T., Baskin, J. S., Liao, B. & Zewail, A. H. High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics. Nat. Photon. 11, 425–430 (2017).

    Article  ADS  Google Scholar 

  18. Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018).

    Article  Google Scholar 

  19. Priebe, K. E. et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photon. 11, 793–797 (2017).

    Article  ADS  Google Scholar 

  20. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  21. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  22. Zhang, D. et al. Segmented terahertz electron accelerator and manipulator (STEAM). Nat. Photon. 12, 336–342 (2018).

    Article  ADS  Google Scholar 

  23. Zhao, L. R. et al. Terahertz oscilloscope for recording time information of ultrashort electron beams. Phys. Rev. Lett. 122, 144801 (2019).

    Article  ADS  Google Scholar 

  24. Woodward, P. M. A method of calculating the field over a plane aperture required to produce a given polar diagram. J. Inst. Electr. Eng. 93, 1554–1558 (1946).

    Google Scholar 

  25. Lawson, J. D. Lasers and accelerators. IEEE Trans. Nucl. Sci. 26, 4217–4219 (1979).

    Article  ADS  Google Scholar 

  26. Tian, Y. et al. Electron emission at locked phases from the laser-driven surface plasma wave. Phys. Rev. Lett. 109, 115002 (2012).

    Article  ADS  Google Scholar 

  27. Thevenet, M. et al. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors. Nat. Phys. 12, 355–360 (2016).

    Article  Google Scholar 

  28. Quéré, F. et al. Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006).

    Article  ADS  Google Scholar 

  29. Thaury, C. et al. Coherent dynamics of plasma mirrors. Nat. Phys. 4, 631–634 (2008).

    Article  Google Scholar 

  30. Zhang, Z. et al. The 1-PW/0.1-Hz laser beamline in SULF facility. High Power Laser Sci. Eng. 8, e4 (2020).

    Article  Google Scholar 

  31. Yu, L. P. et al. High-contrast front end based on cascaded XPWG and femtosecond OPA for 10-PW-level Ti:sapphire laser. Opt. Express 26, 2625–2633 (2018).

    Article  ADS  Google Scholar 

  32. Arber, T. D. et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 57, 113001 (2015).

    Article  ADS  Google Scholar 

  33. Gibbon, P. Short Pulse Laser Interactions with Matter: An Introduction (Imperial College Press, 2005).

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (grants nos 11874372, 11922412 and 11974251), Shanghai Sailing Program (grant no. 20YF1454900), Strategic Priority Research Program (B) (grant no. XDB16), Shanghai Rising-Star Program, Shanghai Commission of Science and Technology (no. 19PJ1410500), the 100 Talents Program of CAS, the Youth Innovation Promotion Association of Chinese Academy of Sciences and the Key Research Program of Frontier Sciences, CAS, grant no. ZDBS-LY-SLH018.

Author information

Authors and Affiliations

Authors

Contributions

C.Z., Y.B. and Y. T. performed the experiment. C.Z., Y.B., L.S., Y.Z. and D.Z. analysed the data with Y.T., J.L, R.L and Z.X.; C.Z. performed the PIC simulations. Y.B. and Y.T. developed the test particle model. Y.X., X.L. and Y.L. developed and maintained the laser sources. All authors participated in the interpretation of the results. C.Z., Y.Z. and Y.T. wrote the manuscript. R.L., J.L. and Y.T. designed and directed the project.

Corresponding authors

Correspondence to Jiansheng Liu, Ye Tian or Ruxin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Mohammed Hassan, Hidemi Shigekawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Bai, Y., Song, L. et al. Direct mapping of attosecond electron dynamics. Nat. Photonics 15, 216–221 (2021). https://doi.org/10.1038/s41566-020-00730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-00730-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing