Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene

Abstract

The concept of gauge fields plays a significant role in many areas of physics, from particle physics and cosmology to condensed-matter systems, where gauge potentials are a natural consequence of electromagnetic fields acting on charged particles and are of central importance in topological states of matter1. Here, we report on the experimental realization of a synthetic non-Abelian gauge field for photons2 in a honeycomb microcavity lattice3. We show that the effective magnetic field associated with transverse electric–transverse magnetic splitting has the symmetry of the Dresselhaus spin–orbit interaction around Dirac points in the dispersion, and can be regarded as an SU(2) gauge field4. The symmetry of the field is revealed in the optical spin Hall effect, where, under resonant excitation of the Dirac points, precession of the photon pseudospin around the field direction leads to the formation of two spin domains. Furthermore, we observe that the Dresselhaus-type field changes its sign in the same Dirac valley on switching from s to p bands, in good agreement with the tight-binding modelling. Our work demonstrating a non-Abelian gauge field for light on the microscale paves the way towards manipulation of photons via spin on a chip.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Photonic graphene sample and dispersion relations.
Fig. 2: Texture of the effective magnetic fields surrounding Γ, K and K′ points.
Fig. 3: Observation of the OSHE.
Fig. 4: Effective magnetic field texture and OSHE for p bands.

Data availability

The data that support the findings of this study are openly available from the University of Sheffield repository at https://doi.org/10.15131/shef.data.13060610.

References

  1. 1.

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  Article  Google Scholar 

  2. 2.

    Chen, Y. et al. Non-Abelian gauge field optics. Nat. Commun. 10, 3125 (2019).

    ADS  Article  Google Scholar 

  3. 3.

    Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Nalitov, A. V., Malpuech, G., Terças, H. & Solnyshkov, D. D. Spin–orbit coupling and the optical spin Hall effect in photonic graphene. Phys. Rev. Lett. 114, 026803 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Yang, C. N. & Mills, R. L. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Wilczek, F. & Zee, A. Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Fröhlich, J. & Studer, U. M. Gauge invariance and current algebra in nonrelativistic many-body theory. Rev. Mod. Phys. 65, 733–802 (1993).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Jin, P.-Q., Li, Y.-Q. & Zhang, F.-C. SU(2) × U(1) unified theory for charge, orbit and spin currents. J. Phys. A 39, 7115–7123 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Ohno, H., Stiles, M. D. & Dieny, B. Spintronics. Proc. IEEE. Inst. Electr. Electron. Eng. 104, 1782–1786 (2016).

    Article  Google Scholar 

  11. 11.

    Aidelsburger, M., Nascimbene, S. & Goldman, N. Artificial gauge fields in materials and engineered systems. Comptes Rendus Phys. 19, 394–432 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Shelykh, I. A., Kavokin, A. V. & Malpuech, G. in Spin Dynamics of Exciton Polaritons in Microcavities Ch. 9, 187–210 (Wiley, 2007).

  13. 13.

    Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photon. 7, 153–158 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Liu, F., Xu, T., Wang, S., Hang, Z. H. & Li, J. Polarization beam splitting with gauge field metamaterials. Adv. Opt. Mater. 7, 1801582 (2019).

    Article  Google Scholar 

  15. 15.

    Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Mittal, S. et al. Topologically robust transport of photons in a synthetic gauge field. Phys. Rev. Lett. 113, 087403 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Rechcińska, K. et al. Engineering spin–orbit synthetic Hamiltonians in liquid–crystal optical cavities. Science 366, 727–730 (2019).

    ADS  Article  Google Scholar 

  18. 18.

    Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).

    ADS  Article  Google Scholar 

  19. 19.

    Fieramosca, A. et al. Chromodynamics of photons in an artificial non-Abelian magnetic Yang–Mills field. Preprint at https://arxiv.org/abs/1912.09684 (2019).

  20. 20.

    Solnyshkov, D., Nalitov, A., Teklu, B., Franck, L. & Malpuech, G. Spin-dependent Klein tunneling in polariton graphene with photonic spin–orbit interaction. Phys. Rev. B 93, 085404 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Milićević, M. et al. Edge states in polariton honeycomb lattices. 2D Mater. 2, 034012 (2015).

    Article  Google Scholar 

  22. 22.

    Milićević, M. et al. Type-III and tilted Dirac cones emerging from flat bands in photonic orbital graphene. Phys. Rev. X 9, 031010 (2019).

    Google Scholar 

  23. 23.

    Sala, V. G. et al. Spin–orbit coupling for photons and polaritons in microstructures. Phys. Rev. X 5, 011034 (2015).

    Google Scholar 

  24. 24.

    Whittaker, C. E. et al. Exciton polaritons in a two-dimensional Lieb lattice with spin–orbit coupling. Phys. Rev. Lett. 120, 097401 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Yang, Y. et al. Synthesis and observation of non-Abelian gauge fields in real space. Science 365, 1021–1025 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    Zhang, C., Wang, Y. & Zhang, W. Topological phase transition with p orbitals in the exciton–polariton honeycomb lattice. J. Phys. Condens. Matter 31, 335403 (2019).

    Article  Google Scholar 

  27. 27.

    Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    ADS  Article  Google Scholar 

  28. 28.

    Kavokin, A., Malpuech, G. & Glazov, M. Optical spin Hall effect. Phys. Rev. Lett. 95, 136601 (2005).

    ADS  Article  Google Scholar 

  29. 29.

    Leyder, C. et al. Observation of the optical spin Hall effect. Nat. Phys. 3, 628–631 (2007).

    Article  Google Scholar 

  30. 30.

    Gulevich, D. R., Yudin, D., Iorsh, I. V. & Shelykh, I. A. Kagome lattice from an exciton–polariton perspective. Phys. Rev. B 94, 115437 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Nalitov, A. V., Solnyshkov, D. D. & Malpuech, G. Polariton \({\mathbb{Z}}\) topological insulator. Phys. Rev. Lett. 114, 116401 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    Klembt, S. et al. Exciton–polariton topological insulator. Nature 562, 552–556 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Bleu, O., Solnyshkov, D. D. & Malpuech, G. Interacting quantum fluid in a polariton Chern insulator. Phys. Rev. B 93, 085438 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Flayac, H., Solnyshkov, D. D., Shelykh, I. A. & Malpuech, G. Transmutation of skyrmions to half-solitons driven by the nonlinear optical spin Hall effect. Phys. Rev. Lett. 110, 016404 (2013).

    ADS  Article  Google Scholar 

  35. 35.

    Shapochkin, P. Y. et al. Polarization-resolved strong light-matter coupling in planar GaAs/AlGaAs waveguides. Opt. Lett. 43, 4526–4529 (2018).

    ADS  Article  Google Scholar 

  36. 36.

    Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photon. 11, 763–773 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Whittaker, C. E. et al. Effect of photonic spin–orbit coupling on the topological edge modes of a Su–Schrieffer–Heeger chain. Phys. Rev. B 99, 081402 (2019).

    ADS  Article  Google Scholar 

  39. 39.

    Shelykh, I. A., Nalitov, A. V. & Iorsh, I. V. Optical analog of Rashba spin–orbit interaction in asymmetric polariton waveguides. Phys. Rev. B 98, 155428 (2018).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The work was supported by UK EPSRC grants nos. EP/N031776/1 and EP/R04385X/1 and by the Russian Science Foundation (project no. 19-72-20120). I.A.S. acknowledges support from the Icelandic Science Foundation, project ‘Hybrid Polaritonics’. A.V.N. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 846353.

Author information

Affiliations

Authors

Contributions

C.E.W. and T.D. performed the experiments and analysed the data. E.C. grew the sample. B.R. performed post-growth fabrication. A.V.N. and I.A.S. provided theoretical input. C.E.W., A.V.N. and A.V.Y. performed theory calculations. C.E.W. and D.N.K. designed the experiment. C.E.W., A.V.N., I.A.S., M.S.S. and D.N.K. wrote the manuscript.

Corresponding authors

Correspondence to C. E. Whittaker or D. N. Krizhanovskii.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature Photonics thanks Yi Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Sections 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Whittaker, C.E., Dowling, T., Nalitov, A.V. et al. Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene. Nat. Photonics (2020). https://doi.org/10.1038/s41566-020-00729-z

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing