Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays

Abstract

Halide perovskite semiconductors are poised to revitalize the field of ionizing radiation detection as they have done to solar photovoltaics. We show that all-inorganic perovskite CsPbBr3 devices resolve 137Cs 662-keV γ-rays with 1.4% energy resolution, as well as other X- and γ-rays with energies ranging from tens of keV to over 1 MeV in ambipolar sensing and unipolar hole-only sensing modes with crystal volumes of 6.65 mm3 and 297 mm3, respectively. We report the scale-up of CsPbBr3 ingots to up to 1.5 inches in diameter with an excellent hole mobility–lifetime product of 8 × 10−3 cm2 V−1 and a long hole lifetime of up to 296 μs. CsPbBr3 detectors demonstrate a wide temperature region from ~2 °C to ~70 °C for stable operation. Detectors protected with suitable encapsulants show a uniform response for over 18 months. Consequently, we identify perovskite CsPbBr3 semiconductor as an exceptional candidate for new-generation high-energy γ-ray detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Asymmetric device designs and their γ-ray response.
Fig. 2: Comparison of ambipolar and unipolar CsPbBr3 devices.
Fig. 3: Crystal growth and charge transport properties.
Fig. 4: Device performance from an optimized planar MSM-type detector.
Fig. 5: Thermal stability of CsPbBr3 devices.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87–91 (2017).

    ADS  Google Scholar 

  2. Xia, J., Zhu, Y. & He, Z. Efficient temperature corrections for gamma-ray energy reconstruction in 3-D position-sensitive CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. A 954, 161340 (2018).

    Google Scholar 

  3. Owens, A. Semiconductor materials and radiation detection. J. Synchrotron Radiat. 13, 143–150 (2006).

    Google Scholar 

  4. Wang, G. et al. Crystal growth and detector performance of large size high-purity Ge crystals. Mater. Sci. Semicond. Process. 39, 54–60 (2015).

    Google Scholar 

  5. Chung, I., Lee, B., He, J., Chang, R. P. H. & Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012).

    ADS  Google Scholar 

  6. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    ADS  Google Scholar 

  7. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Google Scholar 

  8. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    ADS  Google Scholar 

  9. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    ADS  Google Scholar 

  10. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    ADS  Google Scholar 

  11. Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).

    Google Scholar 

  12. He, Y. et al. Resolving the energy of γ-ray photons with MAPbI3 single crystals. ACS Photonics 5, 4132–4138 (2018).

    Google Scholar 

  13. Yakunin, S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photon. 10, 585–589 (2016).

    ADS  Google Scholar 

  14. Wei, H. et al. Dopant compensation in alloyed CH3NH3PbBr3 − xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826–833 (2017).

    ADS  Google Scholar 

  15. Wei, H. & Huang, J. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10, 1066 (2019).

    ADS  Google Scholar 

  16. McCoy, J. J. et al. Overcoming mobility lifetime product limitations in vertical Bridgman production of cadmium zinc telluride detectors. J. Electron. Mater. 48, 4226–4234 (2019).

    ADS  Google Scholar 

  17. Knoll, G. F. in Radiation Detection and Measurement 4th edn 415 (Wiley, 2010).

  18. He, Y. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9, 1609 (2018).

    ADS  Google Scholar 

  19. Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    ADS  Google Scholar 

  20. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    ADS  Google Scholar 

  21. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

    ADS  Google Scholar 

  22. Nazarenko, O., Yakunin, S., Morad, V., Cherniukh, I. & Kovalenko, M. V. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater. 9, e373 (2017).

    Google Scholar 

  23. He, Y. et al. Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy. Nucl. Instrum. Methods Phys. Res. A 922, 217–221 (2019).

    ADS  Google Scholar 

  24. Dirin, D. N., Cherniukh, I., Yakunin, S., Shynkarenko, Y. & Kovalenko, M. V. Solution-grown CsPbBr3 perovskite single crystals for photon detection. Chem. Mater. 28, 8470–8474 (2016).

    Google Scholar 

  25. Jung, H. S. & Park, N.-G. Perovskite solar cells: from materials to devices. Small 11, 10–25 (2015).

    Google Scholar 

  26. Ke, W., Stoumpos, C. C. & Kanatzidis, M. G. ‘Unleaded’ perovskites: status quo and future prospects of tin-based perovskite solar cells. Adv. Mater. 0, 1803230 (2018).

    Google Scholar 

  27. Ke, W. et al. Efficient planar perovskite solar cells using room-temperature vacuum-processed C60 electron selective layers. J. Mater. Chem. A 3, 17971–17976 (2015).

    Google Scholar 

  28. He, Z., Knoll, G. F., Wehe, D. K. & Miyamoto, J. Position-sensitive single carrier CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. A 388, 180–185 (1997).

    ADS  Google Scholar 

  29. Chen, Z., Zhu, Y. & He, Z. Intrinsic photopeak efficiency measurement and simulation for pixelated CdZnTe detector. Nucl. Instrum. Methods Phys. Res. A 980, 164501 (2020).

    Google Scholar 

  30. Zhong, H. Review of the Shockley–Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl. Instrum. Methods Phys. Res. A 463, 250–267 (2001).

    Google Scholar 

  31. Shockley, W. Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635–636 (1938).

    ADS  Google Scholar 

  32. Ramo, S. Currents induced by electron motion. Proc. IRE 27, 584–585 (1939).

    Google Scholar 

  33. Barrett, H. H., Eskin, J. D. & Barber, H. B. Charge transport in arrays of semiconductor gamma-ray detectors. Phys. Rev. Lett. 75, 156–159 (1995).

    ADS  Google Scholar 

  34. Schlesinger, T. E. et al. Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R Rep. 32, 103–189 (2001).

    Google Scholar 

  35. Sellin, P. J., Davies, A. W., Lohstroh, A., Ozsan, M. E. & Parkin, J. Drift mobility and mobility-lifetime products in CdTe:Cl grown by the travelling heater method. IEEE Trans. Nucl. Sci. 52, 3074–3078 (2005).

    ADS  Google Scholar 

  36. Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017).

    ADS  Google Scholar 

  37. Lan, Y. et al. Ultrafast correlated charge and lattice motion in a hybrid metal halide perovskite. Sci. Adv. 5, eaaw5558 (2019).

    ADS  Google Scholar 

  38. Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    ADS  Google Scholar 

  39. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    ADS  Google Scholar 

  40. Harrison, M. J., McGregor, D. S. & Doty, F. P. Fano factor and nonuniformities affecting charge transport in semiconductors. Phys. Rev. B 77, 195207 (2008).

    ADS  Google Scholar 

  41. Dickey, M. D. et al. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18, 1097–1104 (2008).

    Google Scholar 

  42. He, Y. et al. Defect antiperovskite compounds Hg3Q2I2 (Q = S, Se, and Te) for room-temperature hard radiation detection. J. Am. Chem. Soc. 139, 7939–7951 (2017).

    Google Scholar 

  43. Shah, K. S., Lund, J. C., Olschner, F., Moy, L. & Squillante, M. R. Thallium bromide radiation detectors. IEEE Trans. Nucl. Sci. 36, 199–202 (1989).

    ADS  Google Scholar 

  44. Li, W., He, Z., Knoll, G. E., Wehe, D. K. & Stahle, C. M. Spatial variation of energy resolution in 3-D position sensitive CZT gamma-ray spectrometers. In 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (cat. no. 98CH36255) Vol. 621, 628–633 (IEEE, 1998).

Download references

Acknowledgements

This work was supported by the Department of Energy, National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development under contract no. DE-AC02-06CH11357 (Argonne National Laboratory). The project or effort depicted was sponsored in part by the Department of the Defense, Defense Threat Reduction Agency under award HDTRA1-20-2-0002. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Contributions

M.G.K. and Y.H. conceived the experiments. Y.H. and D.Y.C. synthesized, characterized and grew the single crystals. Y.H. fabricated the devices and characterized detector performance. I.H., W.K. and D.G.C. helped to evaporate the electrodes. M.P., C.L. and Z.H. performed the pixelated detector characterization at the University of Michigan. Z.L. and B.W.W. conducted the weighting potential calculation. I.S. performed the contact angle measurement and analysis. Y.H., Z.L., M.P. and M.G.K. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Mercouri G. Kanatzidis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27, Tables 1–3, Appendices A and B and references 1–28.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Petryk, M., Liu, Z. et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photonics 15, 36–42 (2021). https://doi.org/10.1038/s41566-020-00727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-00727-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing