Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Silicon photonics interfaced with integrated electronics for 9 GHz measurement of squeezed light

Abstract

Photonic quantum technology can be enhanced by monolithic fabrication of both the underpinning quantum hardware and the corresponding electronics for classical readout and control. Here, by interfacing complementary metal–oxide–semiconductor (CMOS)-compatible silicon and germanium-on-silicon nanophotonics with silicon-germanium integrated amplification electronics, we curtail total capacitance in a homodyne detector to enhance the speed performance of quantum light measurement. The detector has a 3 dB bandwidth of 1.7 GHz, is shot-noise limited to 9 GHz and has a minaturized required footprint of 0.84 mm2. We show that the detector can measure the continuous spectrum of squeezing from 100 MHz to 9 GHz of a broadband squeezed light source pumped with a continuous-wave laser, and we use the detector to perform state tomography. This provides fast, multipurpose, homodyne detectors for continuous-variable quantum optics, and opens the way to full-stack integration of photonic quantum devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Device schematic and characterization.
Fig. 2: Measurement of a fibre-coupled squeezing source using the integrated detector.

Data availability

Data are available at the University of Bristol data repository, data.bris, at https://doi.org/10.5523/bris.3j52pj4e8oa2821wmrjcmfqg0z.

Code availability

Code is available at the University of Bristol data repository, data.bris, at https://doi.org/10.5523/bris.3j52pj4e8oa2821wmrjcmfqg0z.

References

  1. 1.

    Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2019).

    ADS  Article  Google Scholar 

  2. 2.

    Raffaelli, F. et al. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Sci. Technol. 3, 025003 (2018).

    ADS  Article  Google Scholar 

  3. 3.

    Zhang, G. et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photon. 13, 839–842 (2019).

    ADS  Article  Google Scholar 

  4. 4.

    Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

    ADS  Article  Google Scholar 

  5. 5.

    Pirandola, S., Bardhan, B. R., Gehring, T., Weedbrook, C. & Lloyd, S. Advances in photonic quantum sensing. Nat. Photon. 12, 724–733 (2018).

    ADS  Article  Google Scholar 

  6. 6.

    Herrero-Collantes, M. & Garcia-Escartin, J. C. Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    McMahon, P. L. et al. A fully programmable 100-spin coherent ising machine with all-to-all connections. Science 354, 614–617 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Millot, G. et al. Frequency-agile dual-comb spectroscopy. Nat. Photon. 10, 27–30 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Lvovsky, A. I. & Raymer, M. G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299–332 (2009).

    ADS  Article  Google Scholar 

  11. 11.

    Menicucci, N. C. et al. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006).

    ADS  Article  Google Scholar 

  12. 12.

    Gabriel, C. et al. A generator for unique quantum random numbers based on vacuum states. Nat. Photon. 4, 711–715 (2010).

    ADS  Article  Google Scholar 

  13. 13.

    Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    ADS  Article  Google Scholar 

  14. 14.

    Tse, M. et al. Quantum-enhanced Advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).

    ADS  Article  Google Scholar 

  15. 15.

    Acernese, F. et al. Increasing the astrophysical reach of the Advanced Virgo detector via the application of squeezed vacuum states of light. Phys. Rev. Lett. 123, 231108 (2019).

    ADS  Article  Google Scholar 

  16. 16.

    Hamerly, R., Bernstein, L., Sludds, A., Soljačić, M. & Englund, D. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X 9, 021032 (2019).

    Google Scholar 

  17. 17.

    Serikawa, T. & Furusawa, A. Excess loss in homodyne detection originating from distributed photocarrier generation in photodiodes. Phys. Rev. Appl. 10, 064016 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S. & Andersen, U. L. Deterministic generation of a two-dimensional cluster state. Science 366, 369–372 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Asavanant, W. et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science 366, 373–376 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Zavatta, A., Viciani, S. & Bellini, M. Tomographic reconstruction of the single-photon fock state by high-frequency homodyne detection. Phys. Rev. A 70, 053821 (2004).

    ADS  Article  Google Scholar 

  21. 21.

    Senior, R. et al. Observation of a comb of optical squeezing over many gigahertz of bandwidth. Opt. Express 15, 5310–5317 (2007).

    ADS  Article  Google Scholar 

  22. 22.

    Kashiwazaki, T. et al. Continuous-wave 6-dB-squeezed light with 2.5-THz-bandwidth from single-mode PPLN waveguide. APL Photon. 5, 036104 (2020).

    ADS  Article  Google Scholar 

  23. 23.

    Lischke, S. et al. High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. Opt. Express 23, 27213–27220 (2015).

    ADS  Article  Google Scholar 

  24. 24.

    Masalov, A. V., Kuzhamuratov, A. & Lvovsky, A. I. Noise spectra in balanced optical detectors based on transimpedance amplifiers. Rev. Sci. Instrum. 88, 113109 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    Voki, N., Brandl, P., Schneider-Hornstein, K., Goll, B. & Zimmermann, H. 10 Gb/s switchable binary/PAM-4 receiver and ring modulator driver for 3-D optoelectronic integration. IEEE J. Sel. Top. Quantum Electron. 22, 344–352 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Zhang, X., Zhang, Y.-C., Li, Z., Yu, S. & Guo, H. 1.2-GHz balanced homodyne detector for continuous-variable quantum information technology. IEEE Photon. J. 10, 1–10 (2018).

    Google Scholar 

  27. 27.

    Masada, G. et al. Continuous-variable entanglement on a chip. Nat. Photon. 9, 316–319 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Rahim, A. et al. Open-access silicon photonics platforms in europe. IEEE J. Sel. Top. Quantum Electron. 25, 1–18 (2019).

    Article  Google Scholar 

  29. 29.

    Ast, S. et al. Continuous-wave nonclassical light with gigahertz squeezing bandwidth. Opt. Lett. 37, 2367–2369 (2012).

    ADS  Article  Google Scholar 

  30. 30.

    Painchaud, Y., Poulin, M., Morin, M. & Têtu, M. Performance of balanced detection in a coherent receiver. Opt. Express 17, 3659–3672 (2009).

    ADS  Article  Google Scholar 

  31. 31.

    Kaiser, F., Fedrici, B., Zavatta, A., D’Auria, V. & Tanzilli, S. A fully guided-wave squeezing experiment for fiber quantum networks. Optica 3, 362–365 (2016).

    ADS  Article  Google Scholar 

  32. 32.

    Lvovsky, A. I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B 6, S556 (2004).

    ADS  Article  Google Scholar 

  33. 33.

    Eberle, T. et al. Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, 251102 (2010).

    ADS  Article  Google Scholar 

  34. 34.

    Ding, Y., Peucheret, C., Ou, H. & Yvind, K. Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency. Opt. Lett. 39, 5348–5350 (2014).

    ADS  Article  Google Scholar 

  35. 35.

    Bakir, B. et al. Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers. IEEE Photon. Technol. Lett. 22, 739–741 (2010).

    ADS  Article  Google Scholar 

  36. 36.

    Benedikovic, D. et al. 25 Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures. Photon. Res. 7, 437–444 (2019).

    Article  Google Scholar 

  37. 37.

    Zhao, Y. et al. Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett. 124, 193601 (2020).

    ADS  Article  Google Scholar 

  38. 38.

    Cernansky, R. & Politi, A. Nanophotonic source of quadrature squeezing via self-phase modulation. APL Photon. 5, 101303 (2020).

    ADS  Article  Google Scholar 

  39. 39.

    Vaidya, V. D. et al. Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Sci. Adv. 6, eaba9186 (2020).

    Article  Google Scholar 

  40. 40.

    Hosseinnia, A. H., Atabaki, A. H., Eftekhar, A. A. & Adibi, A. High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler. Opt. Express 23, 30297–30307 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Crimp, M. Loutit and G. Marshall for technical assistance and D. Mahler for helpful discussion. This work was supported by Engineering and Physical Sciences Research Council (EPSRC) programme grant EP/L024020/1, EPSRC UK Quantum Technology Hub in Quantum Enhanced Imaging (QuantIC) (EP/M01326X/1), EPSRC Quantum Technology Capital fund: Quantum Photonic Integrated Circuits (QuPIC) (EP/N015126/1) and the Centre for Nanoscience and Quantum Information (NSQI). J.F. acknowledges support from EPSRC Quantum Engineering Centre for Doctoral Training EP/LO15730/1 and Thales Group. E.J.A. acknowledges support from EPSRC doctoral prize (EP/R513179/1). S.T., V.D. and L.F.B. acknowledge financial support from the European Union by means of the Fond Européen de développement regional (FEDER) through the project OPTique et photonique pour l’Interaction MAtière Lumière (OPTIMAL), the Agence Nationale de la Recherche (ANR) through the projects Hybrid Quantum Light (HyLight) (ANR-17- CE30-0006-01) and Synchronized Pulses in Optical Cavities for Quantum optics and quantum information systems (SPOCQ) (ANR-14-CE32-0019), and the French government through the programme ‘Investments for the Future’ under the Université Côte d’Azur UCA-JEDI project (Quantum@UCA) managed by the ANR (ANR-15-IDEX-01). J.C.F.M. acknowledges support from an EPSRC Quantum Technology Fellowship (EP/M024385/1) and a European Research Council starting grant ERC-2018-STG 803665.

Author information

Affiliations

Authors

Contributions

J.F.T. and J.F. performed device characterization. J.F.T., J.F. and L.F.B. performed squeezed light measurements. J.F.T., J.F. and G.F. performed data analysis. All authors contributed to the theory, project direction and writing of the manuscript. J.C.F.M. directed the project.

Corresponding author

Correspondence to Jonathan C. F. Matthews.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Discussion and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tasker, J.F., Frazer, J., Ferranti, G. et al. Silicon photonics interfaced with integrated electronics for 9 GHz measurement of squeezed light. Nat. Photonics 15, 11–15 (2021). https://doi.org/10.1038/s41566-020-00715-5

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing