Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics

Abstract

Emerging technologies based on tailorable photon–phonon interactions promise new capabilities ranging from high-fidelity information processing to non-reciprocal optics and quantum state control. However, many existing realizations of such light–sound couplings involve unconventional materials and fabrication schemes challenging to co-implement with scalable integrated photonic circuitry. Here, we demonstrate direct acousto-optic modulation within silicon waveguides using electrically driven surface acoustic waves (SAWs). By co-integrating electromechanical SAW transducers with a standard silicon-on-insulator photonic platform, we harness silicon’s strong elasto-optic effect to create travelling-wave phase and single-sideband amplitude modulators from 1 to 5 GHz, with index modulation strengths comparable to electro-optic technologies. Extending this non-local interaction to centimetre scales, we demonstrate non-reciprocal modulation with operation bandwidths of >100 GHz and insertion losses of <0.6 dB. This acousto-optic platform is compatible with complementary metal–oxide–semiconductor fabrication processes and existing silicon photonic device architectures, opening the door to flexible, low-loss modulators and non-magnetic optical isolators and circulators in integrated photonic circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrated acousto-optic platform in silicon photonics.
Fig. 2: Experimental observation of acousto-optic modulation in silicon.
Fig. 3: Dynamics of a representative acousto-optic phase modulator.
Fig. 4: Dynamics of an acousto-optic single-sideband modulator.
Fig. 5: Enhanced efficiency and non-reciprocal modulation in a serpentine device.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS  Google Scholar 

  2. Verhagen, E., Deléglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012).

    ADS  Google Scholar 

  3. Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    Google Scholar 

  4. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    ADS  Google Scholar 

  5. Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

    ADS  Google Scholar 

  6. Fan, L. et al. Integrated optomechanical single-photon frequency shifter. Nat. Photon. 10, 766–770 (2016).

    ADS  Google Scholar 

  7. Bernier, N. R. et al. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8, 604 (2017).

    ADS  Google Scholar 

  8. Safavi-Naeini, A. H., Van Thourhout, D., Baets, R. & Van Laer, R. Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica 6, 213–232 (2019).

    ADS  Google Scholar 

  9. Tomes, M. & Carmon, T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett. 102, 113601 (2009).

    ADS  Google Scholar 

  10. Jiang, W. C., Lu, X., Zhang, J. & Lin, Q. High-frequency silicon optomechanical oscillator with an ultralow threshold. Opt. Express 20, 15991–15996 (2012).

    ADS  Google Scholar 

  11. Fong, K. Y., Fan, L., Jiang, L., Han, X. & Tang, H. X. Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems. Phys. Rev. A 90, 051801 (2014).

    ADS  Google Scholar 

  12. Marpaung, D. et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica 2, 76–83 (2015).

    ADS  Google Scholar 

  13. Kang, M. S., Butsch, A. & Russell, P. St. J. Reconfigurable light-driven opto–acoustic isolators in photonic crystal fibre. Nat. Photon. 5, 549–553 (2011).

    ADS  Google Scholar 

  14. Dong, C. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun. 6, 6193 (2015).

    ADS  Google Scholar 

  15. Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Google Scholar 

  16. Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657–661 (2016).

    ADS  Google Scholar 

  17. Ruesink, F., Miri, M.-A., Alù, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

    ADS  Google Scholar 

  18. Kim, J., Kim, S. & Bahl, G. Complete linear optical isolation at the microscale with ultralow loss. Sci. Rep. 7, 1647 (2017).

    ADS  Google Scholar 

  19. Pant, R. et al. On-chip stimulated Brillouin scattering. Opt. Express 19, 8285–8290 (2011).

    ADS  Google Scholar 

  20. Kittlaus, E. A., Otterstrom, N. T. & Rakich, P. T. On-chip inter-modal Brillouin scattering. Nat. Commun. 8, 15819 (2017).

    ADS  Google Scholar 

  21. Otterstrom, N. T. et al. Resonantly enhanced nonreciprocal silicon Brillouin amplifier. Optica 6, 1117–1123 (2019).

    ADS  Google Scholar 

  22. Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    ADS  Google Scholar 

  23. Morrison, B. et al. Compact Brillouin devices through hybrid integration on silicon. Optica 4, 847–854 (2017).

    ADS  Google Scholar 

  24. Otterstrom, N. T., Behunin, R. O., Kittlaus, E. A., Wang, Z. & Rakich, P. T. A silicon Brillouin laser. Science 360, 1113–1116 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  25. Gundavarapu, S. et al. Sub-Hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).

    ADS  Google Scholar 

  26. Kuhn, L., Heidrich, P. F. & Lean, E. G. Optical guided wave mode conversion by an acoustic surface wave. Appl. Phys. Lett. 19, 428 (1971).

    ADS  Google Scholar 

  27. Sasaki, H., Kushibiki, J. & Chubachi, N. Efficient acousto-optic TETM mode conversion in ZnO films. Appl. Phys. Lett. 25, 476–477 (1974).

    ADS  Google Scholar 

  28. Ohmachi, Y. & Noda, J. LiNbO3 TE–TM mode converter using collinear acoustooptic interaction. IEEE J. Quantum Electron. 13, 43–46 (1977).

    ADS  Google Scholar 

  29. Gorecki, C., Chollet, F., Bonnotte, E. & Kawakatsu, H. Silicon-based integrated interferometer with phase modulation driven by surface acoustic waves. Opt. Lett. 22, 1784–1786 (1997).

    ADS  Google Scholar 

  30. de Lima, M. M., Beck, M., Hey, R. & Santos, P. V. Compact Mach–Zehnder acousto-optic modulator. Appl. Phys. Lett. 89, 121104 (2006).

    ADS  Google Scholar 

  31. Tadesse, S. A. & Li, M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nat. Commun. 5, 5402 (2014).

    ADS  Google Scholar 

  32. Tadesse, S. A., Li, H., Liu, Q. & Li, M. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band. Appl. Phys. Lett. 107, 201113 (2015).

    ADS  Google Scholar 

  33. Balram, K. C. et al. Acousto-optic modulation and optoacoustic gating in piezo-optomechanical circuits. Phys. Rev. Appl. 7, 024008 (2017).

    ADS  Google Scholar 

  34. Liu, Q., Li, H. & Li, M. Electromechanical Brillouin scattering in integrated optomechanical waveguides. Optica 6, 778–785 (2019).

    ADS  Google Scholar 

  35. Jiang, W. et al. Lithium niobate piezo-optomechanical crystals. Optica 6, 845–853 (2019).

    ADS  Google Scholar 

  36. Shao, L. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498–1505 (2019).

    ADS  Google Scholar 

  37. Wu, M., Zeuthen, E., Balram, K. C. & Srinivasan, K. Microwave-to-optical transduction using a mechanical supermode for coupling piezoelectric and optomechanical resonators. Phys. Rev. Appl. 13, 014027 (2020).

    ADS  Google Scholar 

  38. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

    ADS  Google Scholar 

  39. Sohn, D. B., Kim, S. & Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photon. 12, 91–97 (2018).

    ADS  Google Scholar 

  40. Kittlaus, E. A., Otterstrom, N. T., Kharel, P., Gertler, S. & Rakich, P. T. Non-reciprocal interband Brillouin modulation. Nat. Photon. 12, 613–619 (2018).

    ADS  Google Scholar 

  41. Sohn, D. B. & Bahl, G. Direction reconfigurable nonreciprocal acousto–optic modulator on chip. APL Photonics 4, 126103 (2019).

    ADS  Google Scholar 

  42. Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I.-W. & Osgood, R. M.Jr Magneto–optical isolator with silicon waveguides fabricated by direct bonding. Appl. Phys. Lett. 92, 071117 (2008).

    ADS  Google Scholar 

  43. Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon. 5, 758–762 (2011).

    ADS  Google Scholar 

  44. Huang, D. et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics. IEEE J. Sel. Top. Quantum Electron. 22, 271–278 (2016).

    Google Scholar 

  45. Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photon. 11, 774–783 (2017).

    ADS  Google Scholar 

  46. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro–optic modulator. Nature 435, 325–327 (2005).

    ADS  Google Scholar 

  47. Chen, L., Preston, K., Manipatruni, S. & Lipson, M. Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. Opt. Express 17, 15248–15256 (2009).

    ADS  Google Scholar 

  48. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010).

    ADS  Google Scholar 

  49. Watts, M. R., Zortman, W. A., Trotter, D. C., Young, R. W. & Lentine, A. L. Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator. IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).

    ADS  Google Scholar 

  50. Baehr-Jones, T. et al. A 25-Gb/s silicon photonics platform. Preprint at https://arxiv.org/pdf/1203.0767.pdf (2012).

  51. Weigel, P. O. et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100-GHz 3-dB electrical modulation bandwidth. Opt. Express 26, 23728–23739 (2018).

    ADS  Google Scholar 

  52. Wang, C. et al. Integrated lithium niobate electro–optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    ADS  Google Scholar 

  53. Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    ADS  Google Scholar 

  54. Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017).

    ADS  Google Scholar 

  55. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    ADS  Google Scholar 

  56. Huang, D. et al. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica 6, 745–752 (2019).

    ADS  Google Scholar 

  57. Sarabalis, C. J., Hill, J. T. & Safavi-Naeini, A. H. Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics. APL Photonics 1, 071301 (2016).

    ADS  Google Scholar 

  58. Munk, D. et al. Surface acoustic wave photonic devices in silicon on insulator. Nat. Commun. 10, 4214 (2019).

    ADS  Google Scholar 

  59. Shin, H. et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun. 4, 1944 (2013).

    ADS  Google Scholar 

  60. Kittlaus, E. A., Shin, H. & Rakich, P. T. Large Brillouin amplification in silicon. Nat. Photon. 10, 463–467 (2016).

    ADS  Google Scholar 

  61. Van Laer, R., Kuyken, B., Van Thourhout, D. & Baets, R. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nat. Photon. 9, 199–203 (2015).

    ADS  Google Scholar 

  62. Sarabalis, C. J., Dahmani, Y. D., Patel, R. N., Hill, J. T. & Safavi-Naeini, A. H. Release-free silicon-on-insulator cavity optomechanics. Optica 4, 1147–1150 (2017).

    ADS  Google Scholar 

  63. Van Laer, R., Patel, R. N., McKenna, T. P., Witmer, J. D. & Safavi-Naeini, A. H. Electrical driving of X-band mechanical waves in a silicon photonic circuit. APL Photonics 3, 086102 (2018).

    ADS  Google Scholar 

  64. Wu, R., Supradeepa, V., Long, C. M., Leaird, D. E. & Weiner, A. M. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35, 3234–3236 (2010).

    ADS  Google Scholar 

  65. Kang, M. S., Nazarkin, A., Brenn, A. & Russell, P. St. J. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nat. Phys. 5, 276–280 (2009).

    Google Scholar 

  66. Sarabalis, C. J., Van Laer, R. & Safavi-Naeini, A. H. Optomechanical antennas for on-chip beam-steering. Opt. Express 26, 22075–22099 (2018).

    ADS  Google Scholar 

  67. Xiong, C. et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 14, 095014 (2012).

    ADS  Google Scholar 

  68. Royer, D. & Dieulesaint, E. Elastic Waves in Solids II: Generation, Acousto–Optic Interaction, Applications (Springer Science & Business Media, 1999).

  69. Kharel, P., Behunin, R. O., Renninger, W. H. & Rakich, P. T. Noise and dynamics in forward Brillouin interactions. Phys. Rev. A 93, 063806 (2016).

    ADS  Google Scholar 

  70. Gertler, S., Kharel, P., Kittlaus, E. A., Otterstrom, N. T. & Rakich, P. T. Shaping nonlinear optical response using nonlocal forward Brillouin interactions. New J. Phys. 22, 043017 (2020).

    ADS  MathSciNet  Google Scholar 

  71. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    ADS  Google Scholar 

  72. Hashimoto, K. Y., Sato, S., Teshigahara, A., Nakamura, T. & Kano, K. High-performance surface acoustic wave resonators in the 1 to 3-GHz range using a ScAlN/6H-SiC structure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 637–642 (2013).

    Google Scholar 

Download references

Acknowledgements

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We acknowledge helpful discussions with S. Gertler, P. O. Weigel, M. S. Mohamed, S. Forouhar, L. Sterczewski, A. Qamar, C. Frez and D. Wilson. N.T.O. acknowledges support from the National Science Foundation Graduate Research Fellowship under grant no. DGE1122492.

Author information

Authors and Affiliations

Authors

Contributions

E.A.K. and P.T.R. conceived the project and developed numerical and analytical models of the device physics. E.A.K. designed the devices with the assistance of P.T.R., N.T.O., R.E.M. and M.R.-Z. E.A.K., W.M.J. and R.E.M. fabricated the devices. E.A.K. conducted the experiments with the assistance of W.M.J., N.T.O. and M.R.-Z. All authors contributed to the writing of this paper.

Corresponding author

Correspondence to Eric A. Kittlaus.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information; Supplementary notes I–VII and Figs. 1–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kittlaus, E.A., Jones, W.M., Rakich, P.T. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photonics 15, 43–52 (2021). https://doi.org/10.1038/s41566-020-00711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-00711-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing