Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient photoinduced second-harmonic generation in silicon nitride photonics

Abstract

Silicon photonics lacks a second-order nonlinear optical (χ(2)) response in general, because the typical constituent materials are centrosymmetric and lack inversion symmetry, which prohibits χ(2) nonlinear processes such as second-harmonic generation (SHG). Here, we realize high SHG efficiency in silicon photonics by combining a photoinduced effective χ(2) nonlinearity with resonant enhancement and perfect phase matching. We show a conversion efficiency of (2,500 ± 100)% W−1 that is two to four orders of magnitude larger than previous field-induced SHG works. In particular, our devices realize milliwatt-level SHG output powers with up to (22 ± 1)% power conversion efficiency. This demonstration is a breakthrough in realizing efficient χ(2) processes in silicon photonics, and paves the way for further integration of self-referenced frequency combs and optical frequency references.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Photoinduced SHG in a Si3N4 microring resonator.
Fig. 2: Device transmission shows perfect phase matching with high-Q resonances.
Fig. 3: Laser detuning to optimize photoinduced SHG in the microring.
Fig. 4: High efficiency is achieved by photoinduced SHG in silicon photonics.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

  2. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    ADS  Google Scholar 

  3. Singh, N. et al. Silicon photonics optical frequency synthesizer—SPOFS. In 2019 Conference on Lasers and Electro-Optics ATh4I.2 (IEEE, 2019).

  4. Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).

    ADS  Google Scholar 

  5. Xue, X. et al. Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. Light Sci. Appl. 6, e16253 (2017).

    Google Scholar 

  6. Guo, X., Zou, C.-L. & Tang, H. X. Second-harmonic generation in aluminum nitride microrings with 2,500 %/W conversion efficiency. Optica 3, 1126–1131 (2016).

    ADS  Google Scholar 

  7. Bruch, A. W. et al. 17,000 %/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl. Phys. Lett. 113, 131102 (2018).

    ADS  Google Scholar 

  8. Bruch, A. W., Liu, X., Surya, J. B., Zou, C.-L. & Tang, H. X. On-chip χ(2) microring optical parametric oscillator. Optica 6, 1361–1366 (2019).

    ADS  Google Scholar 

  9. Bruch, A. W. et al. Pockels soliton microcomb. Nat. Photon. https://doi.org/10.1038/s41566-020-00704-8 (2020).

  10. Chang, L. et al. High efficiency SHG in heterogenous integrated GaAs ring resonators. APL Photon. 4, 036103 (2019).

    ADS  Google Scholar 

  11. Chang, L. et al. Thin film wavelength converters for photonic integrated circuits. Optica 3, 531–535 (2016).

    ADS  Google Scholar 

  12. Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).

    ADS  Google Scholar 

  13. Luo, R., He, Y., Liang, H., Li, M. & Lin, Q. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica 4, 1251–1258 (2018).

    ADS  Google Scholar 

  14. Chen, J.-Y. et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica 6, 1244–1245 (2019).

    ADS  Google Scholar 

  15. Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000 %/W. Optica 6, 1455–1460 (2019).

    ADS  Google Scholar 

  16. Chang, L. et al. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett. 42, 803–806 (2017).

    ADS  Google Scholar 

  17. Song, B.-S. et al. Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide. Optica 6, 991–995 (2019).

    ADS  Google Scholar 

  18. Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photon. 14, 330–334 (2020).

    ADS  Google Scholar 

  19. Levy, J. S., Foster, M. A., Gaeta, A. L. & Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 19, 11415–11421 (2011).

    ADS  Google Scholar 

  20. Zhang, X. et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photon. 13, 21–24 (2019).

    ADS  Google Scholar 

  21. Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photon. 11, 200–206 (2017).

    ADS  Google Scholar 

  22. Porcel, M. A. et al. Photo-induced second-order nonlinearity in stoichiometric silicon nitride waveguides. Opt. Express 25, 33143–33159 (2017).

    ADS  Google Scholar 

  23. Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).

    ADS  Google Scholar 

  24. Hickstein, D. D. et al. Self-organized nonlinear gratings for ultrafast nanophotonics. Nat. Photon. 13, 494–499 (2019).

    ADS  Google Scholar 

  25. Grassani, D., Pfeiffer, M. H. P., Kippenberg, T. J. & Brès, C.-S. Second- and third-order nonlinear wavelength conversion in an all-optically poled Si3N4 waveguide. Opt. Lett. 44, 106–109 (2019).

    ADS  Google Scholar 

  26. Nitiss, E. et al. Formation rules and dynamics of photoinduced χ(2) gratings in silicon nitride waveguides. ACS Photon. 7, 147–153 (2020).

    Google Scholar 

  27. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    ADS  Google Scholar 

  28. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    ADS  Google Scholar 

  29. Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).

    ADS  Google Scholar 

  30. Karpov, M., Pfeiffer, M. H., Liu, J., Lukashchuk, A. & Kippenberg, T. J. Photonic chip-based soliton frequency combs covering the biological imaging window. Nat. Commun. 9, 1146 (2018).

    ADS  Google Scholar 

  31. Li, Q., Davanço, M. & Srinivasan, K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photon. 10, 406–414 (2016).

    ADS  Google Scholar 

  32. Lu, X. et al. Efficient telecom-to-visible spectral translation using silicon nanophotonics. Nat. Photon. 13, 593–601 (2019).

    ADS  Google Scholar 

  33. Lu, X. et al. Milliwatt-threshold visible-telecom opticalparametric oscillation using silicon nanophotonics. Optica 6, 1535–1541 (2019).

    ADS  Google Scholar 

  34. Österberg, U. & Margulis, W. Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber. Opt. Lett. 11, 516–518 (1986).

    ADS  Google Scholar 

  35. Österberg, U. & Margulis, W. Experimental studies on efficient frequency doubling in glass optical fibers. Opt. Lett. 12, 57–59 (1987).

    ADS  Google Scholar 

  36. Stolen, R. H. & Tom, H. W. K. Self-organized phase-matched harmonic generation in optical fibers. Opt. Lett. 12, 585–587 (1987).

    ADS  Google Scholar 

  37. Tom, H. W. K., Stolen, R. H., Aumiller, G. D. & Pleibel, W. Preparation of long-coherence-length second-harmonic-generating optical fibers by using mode-locked pulses. Opt. Lett. 13, 512–514 (1988).

    ADS  Google Scholar 

  38. Margulis, W., Laurell, F. & Lesche, B. Imaging the nonlinear grating in frequency-doubling fibres. Nature 378, 699–701 (1995).

    ADS  Google Scholar 

  39. Éntin, M. V. Theory of the coherent photovoltaic effect. Sov. Phys. Semicond. 23, 664 (1989).

    Google Scholar 

  40. Dianov, E. M., Kazanskiĭ, P. G. & Stepanov, D. Y. Problem of the photoinduced second harmonic generation in optical fibers. Sov. J. Quantum Electron. 19, 575–576 (1989).

    ADS  Google Scholar 

  41. Terhune, R. W. & Weinberger, D. A. Second-harmonic generation in fibers. J. Opt. Soc. Am. B 4, 661–674 (1987).

    ADS  Google Scholar 

  42. Terhune, R. W., Maker, P. D. & Savage, C. M. Optical harmonic generation in calcite. Phys. Rev. Lett. 8, 404–406 (1962).

    ADS  Google Scholar 

  43. Ilchenko, V. S., Savchenkov, A. A., Matsko, A. B. & Maleki, L. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004).

    ADS  Google Scholar 

  44. Ning, T. et al. Efficient second-harmonic generation in silicon nitride resonant waveguide gratings. Opt. Lett. 37, 4269–4271 (2012).

    ADS  Google Scholar 

  45. Stern, L., Desiatov, B., Goykhman, I. & Levy, U. Nanoscale light–matter interactions in atomic cladding waveguides. Nat. Commun. 4, 1548 (2013).

    ADS  Google Scholar 

  46. Hummon, M. T. et al. Photonic chip for laser stabilization to an atomic vapor with 10−11 instability. Optica 5, 443–449 (2018).

    ADS  Google Scholar 

  47. Boller, K.-J. et al. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics 7, 4 (2019).

    Google Scholar 

  48. Xiang, C. et al. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica 7, 20–21 (2020).

    ADS  Google Scholar 

  49. Poulin, M., Latrasse, C., Touahri, D. & Têtu, M. Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms. Opt. Commun. 207, 233–242 (2002).

    ADS  Google Scholar 

  50. Lu, X., Rogers, S., Jiang, W. C. & Lin, Q. Selective engineering of cavity resonance for frequency matching in optical parametric processes. Appl. Phys. Lett. 105, 151104 (2014).

    ADS  Google Scholar 

  51. Rauthan, C. & Srivastava, J. Electrical breakdown voltage characteristics of buried silicon nitride layers and their correlation to defects in correlation to defects in the nitride layer. Mater. Lett. 9, 252–258 (1990).

    Google Scholar 

Download references

Acknowledgements

X.L. thanks L. Vivien for helpful discussions. This work is supported by the DARPA DODOS, ACES and NIST-on-a-chip programmes. X.L. and G.M. acknowledge support under the Cooperative Research Agreement between the University of Maryland and NIST-PML, award no. 70NANB10H193.

Author information

Authors and Affiliations

Authors

Contributions

X.L. led the design, fabrication and measurement of the SHG devices. G.M., A.R. and K.S. provided assistance with design and measurement. D.A.W. provided assistance with fabrication. All authors participated in the analysis and discussion of results. X.L. and K.S. wrote the manuscript with assistance from all authors, and K.S. supervised the project.

Corresponding authors

Correspondence to Xiyuan Lu or Kartik Srinivasan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–6 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Moille, G., Rao, A. et al. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photonics 15, 131–136 (2021). https://doi.org/10.1038/s41566-020-00708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-00708-4

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing