Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-power portable terahertz laser systems

Abstract

Terahertz (THz) frequencies remain among the least utilized in the electromagnetic spectrum, largely due to the lack of powerful and compact sources. The invention of THz quantum cascade lasers (QCLs) was a major breakthrough to bridge the so-called ‘THz gap’ between semiconductor electronic and photonic sources. However, their demanding cooling requirement has confined the technology to a laboratory environment. A portable and high-power THz laser system will have a qualitative impact on applications in medical imaging, communications, quality control, security and biochemistry. Here, by adopting a design strategy that achieves a clean three-level system, we have developed THz QCLs (at ~4 THz) with a maximum operating temperature of 250 K. The high operating temperature enables portable THz systems to perform real-time imaging with a room-temperature THz camera, as well as fast spectral measurements with a room-temperature detector.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Probability density functions of subband states in a THz QCL with two quantum wells per module in the active region.
Fig. 2: Optical and electrical characterization of a device fabricated from wafer G652 with dimensions 1.23 mm × 150 μm, biased with 400-ns pulse width at 500 Hz.
Fig. 3: Measurements of a TEC-cooled THz QCL device using room-temperature pyroelectric detectors and a THz camera.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Mittleman, D. M. Twenty years of terahertz imaging. Opt. Express 26, 9417–9431 (2018).

    Article  ADS  Google Scholar 

  2. Korter, T. & Plusquellic, D. F. Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared. Chem. Phys. Lett. 385, 45–51 (2004).

    Article  ADS  Google Scholar 

  3. Ogawa, Y., Hayashi, S., Oikawa, M., Otani, C. & Kawase, K. Interference terahertz label-free imaging for protein detection on a membrane. Opt. Express 16, 22083–22089 (2008).

    Article  ADS  Google Scholar 

  4. Kidd Walker, C. et al. GUSTO: Gal/Xgal U/LDB Spectroscopic-Stratospheric TeraHertz Observatory Abstract 231 (American Astronomical Society, 2018).

  5. Rezac, L. et al. First detection of the 63-μm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA. A&A 580, L10 (2015).

    Article  ADS  Google Scholar 

  6. Federici, J. F. et al. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20, 266–280 (2005).

    Article  Google Scholar 

  7. Duling, I. & Zimdars, D. Terahertz imaging: revealing hidden defects. Nat. Photon. 3, 630–632 (2009).

    Article  ADS  Google Scholar 

  8. Rahman, A., Rahman, A. K. & Rao, B. Early detection of skin cancer via terahertz spectral profiling and 3D imaging. Biosens. Bioelectron. 82, 64–70 (2016).

    Article  Google Scholar 

  9. Cheon, H. et al. Detection and manipulation of methylation in blood cancer DNA using terahertz radiation. Sci. Rep. 9, 6413 (2019).

    Article  ADS  Google Scholar 

  10. Köhler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  11. Siles, J. V. et al. A new generation of room-temperature frequency-multiplied sources with up to 10× higher output power in the 160-GHz–1.6-THz range. IEEE Trans. Terahertz Sci. Technol. 8, 596–604 (2018).

    Article  ADS  Google Scholar 

  12. Imran, M. et al. THz diode technology: status, prospects and applications. Proc. IEEE 105, 990–1007 (2017).

    Article  Google Scholar 

  13. McIntosh, K. A. et al. Terahertz photomixing with diode lasers in low-temperature-grown GaAs. Appl. Phys. Lett. 67, 3844 (1995).

    Article  ADS  Google Scholar 

  14. Belkin, M. A. et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat. Photon. 1, 288–292 (2007).

    Article  ADS  Google Scholar 

  15. Lu, Q. Y. et al. Continuous operation of a monolithic semiconductor terahertz source at room temperature. Appl. Phys. Lett. 104, 221105 (2014).

    Article  ADS  Google Scholar 

  16. Berry, C. W., Hashemi, M. R. & Jarrahi, M. Generation of high-power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas. Appl. Phys. Lett. 104, 081122 (2014).

    Article  ADS  Google Scholar 

  17. Singh, A. et al. Up to 70-THz bandwidth from an implanted Ge photoconductive antenna excited by a femtosecond Er:fibre laser. Light Sci. Appl. 9, 30 (2020).

    Article  ADS  Google Scholar 

  18. Wilke, I. & Suranjana, S. in Terahertz Spectroscopy (ed. Dexheimer, S. L.) 59–90 (CRC Press, 2017).

  19. Curwen, C. A., Reno, J. L. & Williams, B. S. Terahertz quantum cascade VECSEL with watt-level output power. Appl. Phys. Lett. 113, 011104 (2018).

    Article  ADS  Google Scholar 

  20. Jin, Y., Reno, J. L. & Kumar, S. Phase-locked terahertz plasmonic laser array with 2-W output power in a single spectral mode. Optica 7, 708–715 (2020).

    Article  ADS  Google Scholar 

  21. Khalatpour, A., Reno, J. L., Kherani, N. P. & Hu, Q. Unidirectional photonic wire laser. Nat. Photon. 11, 555–559 (2017).

    Article  Google Scholar 

  22. Burghoff, D. et al. Terahertz laser frequency combs. Nat. Photon. 8, 462–467 (2014).

    Article  ADS  Google Scholar 

  23. Rösch, M., Scalari, G., Beck, M. & Faist, J. Octave-spanning semiconductor laser. Nat. Photon. 9, 42–47 (2015).

    Article  ADS  Google Scholar 

  24. Kao, T. Y., Reno, J. L. & Hu, Q. Amplifiers of free-space terahertz radiation. Optica 4, 713–716 (2017).

    Article  ADS  Google Scholar 

  25. Williams, B. S., Kumar, S., Hu, Q. & Reno, J. L. Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. Opt. Express 13, 3331–3339 (2005).

    Article  ADS  Google Scholar 

  26. Fathololoumi, S. et al. Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling. Opt. Express 20, 3866–3876 (2012).

    Article  ADS  Google Scholar 

  27. Bosco, L. et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl. Phys. Lett. 115, 010601 (2019).

    Article  ADS  Google Scholar 

  28. Albo, A. & Hu, Q. Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers. Appl. Phys. Lett. 107, 241101 (2015).

    Article  ADS  Google Scholar 

  29. Albo, A., Hu, Q. & Reno, J. L. Room temperature negative differential resistance in terahertz quantum cascade laser structures. Appl. Phys. Lett. 109, 081102 (2016).

    Article  ADS  Google Scholar 

  30. Chan, C. W. I., Albo, A., Hu, Q. & Reno, J. L. Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers. Appl. Phys. Lett. 109, 201104 (2016).

    Article  ADS  Google Scholar 

  31. Williams, B. S., Callebaut, H., Kumar, S., Hu, Q. & Reno, J. L. 3.4-THz quantum cascade laser based on LO-phonon scattering for depopulation. Appl. Phys. Lett. 82, 1015 (2003).

    Article  ADS  Google Scholar 

  32. Kumar, S., Chan, C. W. I., Hu, Q. & Reno, J. L. Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation. Appl. Phys. Lett. 95, 141110 (2009).

    Article  ADS  Google Scholar 

  33. Scalari, G. et al. Broadband THz lasing from a photon–phonon quantum cascade structure. Opt. Express 18, 8043–8052 (2010).

    Article  ADS  Google Scholar 

  34. Albo, A., Flores, Y. V., Hu, Q. & Reno, J. L. Two-well terahertz quantum cascade lasers with suppressed carrier leakage. Appl. Phys. Lett. 111, 111107 (2017).

    Article  ADS  Google Scholar 

  35. Page, H. et al. 300-K operation of a GaAs-based quantum-cascade laser at λ ≈ 9 μm. Appl. Phys. Lett. 78, 3529–3531 (2001).

    Article  ADS  Google Scholar 

  36. Franckié, M. et al. Two-well quantum cascade laser optimization by non-equilibrium Green function modeling. Appl. Phys. Lett. 112, 021104 (2018).

    Article  ADS  Google Scholar 

  37. Franckié, M. & Jérôme, F. Bayesian optimization of terahertz quantum cascade lasers. Appl. Phys. Appl. 13, 034025 (2020).

    Google Scholar 

  38. Vitiello, M. S. et al. Non-equilibrium longitudinal and transverse optical phonons in terahertz quantum cascade lasers. Appl. Phys. Lett. 100, 091101 (2012).

    Article  ADS  Google Scholar 

  39. Faist, J. Quantum Cascade Lasers (Oxford Univ. Press, 2013).

  40. Wade, A. et al. Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K. Nat. Photon. 3, 41–45 (2009).

    Article  ADS  Google Scholar 

  41. Kainz, A. M. et al. Thermoelectric-cooled terahertz quantum cascade lasers. Opt. Express 27, 20688–20693 (2019).

    Article  ADS  Google Scholar 

  42. Lee, A. W. M., Williams, B. S., Kumar, S., Hu, Q. & Reno, J. L. Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array. IEEE Photon. Technol. Lett. 18, 1415–1417 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Lee and W. Kao at LongWave Photonics for the loan of the NEC THz camera. This work is supported by National Aeronautics and Space Administration (NASA), the Canada First Research Excellence Fund and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Contributions

A.K. developed the simulation and optimization codes, designed and fabricated the lasers and performed the measurements. The single-stage TEC chamber was designed by A.K. and further improved by A.K.P. A.K.P. optimized the multistage TEC set-up and performed the real-time imaging with a THz camera and spectral measurements using a pyroelectric detector. C.D. performed MBE growth and optimization of growth conditions, as well as MBE related material characterization, under the supervision of Z.R.W. The project was supervised by Q.H., who was also involved in the design and formulated the design strategy of clean n-level systems for the QCL structures. A.K. and Q.H. wrote the paper with editing help from C.D. and Z.R.W. A.K.P. wrote the TEC section in the Supplementary Information. C.D. and Z.R.W. wrote the MBE growth details in the Supplementary Information.

Corresponding author

Correspondence to Qing Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials to the main file, including 11 figures and 6 references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalatpour, A., Paulsen, A.K., Deimert, C. et al. High-power portable terahertz laser systems. Nat. Photonics 15, 16–20 (2021). https://doi.org/10.1038/s41566-020-00707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-00707-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing