Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pockels soliton microcomb

Abstract

Kerr soliton microcombs have recently emerged as a prominent topic in integrated photonics and have enabled new horizons for optical frequency metrology. Kerr soliton microcombs, as the name suggests, are based on high-order cubic optical nonlinearity. It is desirable to exploit quadratic photonic materials, namely Pockels materials, for soliton generation and on-chip implementation of 1f–2f comb self-referencing. Such quadratically driven solitons have been proposed theoretically, but have not yet been observed in a nanophotonic platform, despite recent progress in quadratic comb generation in free-space and crystalline resonators. Here, we report photonic-chip-based Pockels microcomb solitons driven by three-wave mixing in an aluminium nitride microring resonator. In contrast to typical Kerr solitons, the Pockels soliton features unity soliton generation fidelity, two-by-two evolution of multi-soliton states, favourable tuning dynamics and high pump-to-soliton conversion efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the Pockels microcomb in AlN microresonators.
Fig. 2: Comb detuning and power spectra.
Fig. 3: Numerical simulation of the Pockels microcomb.
Fig. 4: Robustness and power conversion efficiency of the Pockels comb.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    ADS  Google Scholar 

  2. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    ADS  Google Scholar 

  3. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    ADS  Google Scholar 

  4. Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

    ADS  Google Scholar 

  5. Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).

    ADS  Google Scholar 

  6. Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25–30 (2019).

    ADS  Google Scholar 

  7. Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).

    ADS  Google Scholar 

  8. Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).

    ADS  Google Scholar 

  9. Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

    ADS  Google Scholar 

  10. Kues, M. et al. Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019).

    ADS  Google Scholar 

  11. Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photon. 6, 480–487 (2012).

    ADS  Google Scholar 

  12. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Google Scholar 

  13. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    ADS  Google Scholar 

  14. Guo, X. et al. Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb. Phys. Rev. Appl. 10, 014012 (2018).

    ADS  Google Scholar 

  15. He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).

    ADS  Google Scholar 

  16. Liu, X. et al. Beyond 100-THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide. Nat. Commun. 10, 2971 (2019).

    ADS  Google Scholar 

  17. Hickstein, D. D. et al. Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities. Phys. Rev. Appl. 8, 014025 (2017).

    ADS  Google Scholar 

  18. Xue, X. et al. Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. Light Sci. Appl. 6, e16253 (2017).

    Google Scholar 

  19. Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Stokes solitons in optical microcavities. Nat. Phys. 13, 53–57 (2017).

    Google Scholar 

  20. Skryabin, D. V. & Champneys, A. R. Walking cavity solitons. Phys. Rev. E 63, 066610 (2001).

    ADS  Google Scholar 

  21. Ulvila, V., Phillips, C. R., Halonen, L. & Vainio, M. Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities. Opt. Lett. 38, 4281–4284 (2013).

    ADS  Google Scholar 

  22. Ricciardi, I. et al. Frequency comb generation in quadratic nonlinear media. Phys. Rev. A 91, 063839 (2015).

    ADS  Google Scholar 

  23. Mosca, S. et al. Direct generation of optical frequency combs in χ2 nonlinear cavities. Nanophotonics 5, 316–331 (2016).

    Google Scholar 

  24. Mosca, S. et al. Modulation instability induced frequency comb generation in a continuously pumped optical parametric oscillator. Phys. Rev. Lett. 121, 093903 (2018).

    ADS  Google Scholar 

  25. Jankowski, M. et al. Temporal simultons in optical parametric oscillators. Phys. Rev. Lett. 120, 053904 (2018).

    ADS  Google Scholar 

  26. Leo, F. et al. Frequency-comb formation in doubly resonant second-harmonic generation. Phys. Rev. A 93, 043831 (2016).

    ADS  Google Scholar 

  27. Hansson, T. et al. Quadratic soliton combs in doubly resonant second-harmonic generation. Opt. Lett. 43, 6033–6036 (2018).

    ADS  Google Scholar 

  28. Villois, A. & Skryabin, D. V. Soliton and quasi-soliton frequency combs due to second harmonic generation in microresonators. Opt. Express 27, 7098–7107 (2019).

    ADS  Google Scholar 

  29. Villois, A., Kondratiev, N., Breunig, I., Puzyrev, D. N. & Skryabin, D. V. Frequency combs in a microring optical parametric oscillator. Opt. Lett. 44, 4443–4446 (2019).

    ADS  Google Scholar 

  30. Ikuta, R., Asano, M., Tani, R., Yamamoto, T. & Imoto, N. Frequency comb generation in a quadratic nonlinear waveguide resonator. Opt. Express 26, 15551–15558 (2018).

    ADS  Google Scholar 

  31. Hendry, I. et al. Experimental observation of internally pumped parametric oscillation and quadratic comb generation in a χ2 whispering-gallery-mode microresonator. Opt. Lett. 45, 1204–1207 (2020).

    ADS  Google Scholar 

  32. Szabados, J. et al. Frequency comb generation via cascaded second-order nonlinearities in microresonators. Phys. Rev. Lett. 124, 203902 (2020).

    ADS  Google Scholar 

  33. Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nat. Photon. 6, 440–449 (2012).

    ADS  Google Scholar 

  34. Herr, S. J. et al. Frequency comb up- and down-conversion in synchronously driven χ2 optical microresonators. Opt. Lett. 43, 5745–5748 (2018).

    ADS  Google Scholar 

  35. Guo, X., Zou, C.-L., Jung, H. & Tang, H. X. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett. 117, 123902 (2016).

    ADS  Google Scholar 

  36. Bruch, A. W., Liu, X., Surya, J. B., Zou, C.-L. & Tang, H. X. On-chip χ2 microring optical parametric oscillator. Optica 6, 1361–1366 (2019).

    ADS  Google Scholar 

  37. Li, M., Zou, C.-L., Dong, C.-H., Ren, X.-F. & Dai, D.-X. Enhancement of second-harmonic generation based on the cascaded second-and third-order nonlinear processes in a multimode optical microcavity. Phys. Rev. A 98, 013854 (2018).

    ADS  Google Scholar 

  38. Breunig, I. Three-wave mixing in whispering gallery resonators. Laser Photon. Rev. 10, 569–587 (2016).

    ADS  Google Scholar 

  39. Liu, X. et al. Integrated high-Q crystalline AlN microresonators for broadband Kerr and Raman frequency combs. ACS Photonics 5, 1943–1950 (2018).

    Google Scholar 

  40. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Google Scholar 

  41. Szabados, J., Sturman, B. & Breunig, I. Frequency comb generation threshold in χ(2) optical microresonators. Preprint at https://arxiv.org/abs/2007.05287 (2020).

  42. Boyd, R. W. Nonlinear Optics (Elsevier, 2003).

  43. Zhang, S. et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica 6, 206–212 (2019).

    ADS  Google Scholar 

  44. Bao, C. et al. Nonlinear conversion efficiency in Kerr frequency comb generation. Opt. Lett. 39, 6126–6129 (2014).

    ADS  Google Scholar 

  45. Gong, Z. et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett. 43, 4366–4369 (2018).

    ADS  Google Scholar 

  46. Brasch, V., Geiselmann, M., Pfeiffer, M. H. & Kippenberg, T. J. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express 24, 29312–29320 (2016).

    ADS  Google Scholar 

  47. Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  48. Pfeiffer, M. H. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    ADS  Google Scholar 

  49. Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).

    ADS  Google Scholar 

  50. Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica 6, 1455–1460 (2019).

    ADS  Google Scholar 

  51. Chen, J.-Y. et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica 6, 1244–1245 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by DARPA SCOUT (W31P4Q-15-1-0006). H.X.T. acknowledges support from DARPA’s ACES programmes as part of the Draper-NIST collaboration (HR0011-16-C-0118) and a NSF EFRI grant (EFMA-1640959), as well as from the David and Lucile Packard Foundation. We thank Y. Sun, S. Reinhart, K. Woods and M. Rooks for assistance with device fabrication.

Author information

Authors and Affiliations

Authors

Contributions

A.W.B. and H.X.T. conceived the experimental design. A.W.B. performed device fabrication, measurements and data analysis, with assistance from X.L., Z.G. and J.B.S. M.L. and C.-L.Z. performed numerical simulations and provided theoretical support. A.W.B. and H.X.T. wrote the manuscript, with input from all other authors. H.X.T. supervised the project.

Corresponding author

Correspondence to Hong X. Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Notes 1–3.

Supplementary Video 1

Evolution of the Pockels soliton from the numerical simulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruch, A.W., Liu, X., Gong, Z. et al. Pockels soliton microcomb. Nat. Photonics 15, 21–27 (2021). https://doi.org/10.1038/s41566-020-00704-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-00704-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing