Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transient optical symmetry breaking for ultrafast broadband dichroism in plasmonic metasurfaces

Abstract

Ultrafast nanophotonics is an emerging research field aimed at the development of nanodevices capable of light modulation with unprecedented speed1,2,3,4. A promising approach exploits the optical nonlinearity of nanostructured materials (either metallic or dielectric) to modulate their effective permittivity via interaction with intense ultrashort laser pulses. Although the ultrafast temporal dynamics of such nanostructures following photoexcitation has been studied in depth5, sub-picosecond transient spatial inhomogeneities taking place at the nanoscale have been overlooked so far. Here, we demonstrate that the inhomogeneous spacetime distribution of photogenerated hot carriers induces a transient symmetry breaking in a highly symmetric plasmonic metasurface. The process is fully reversible and results in a broadband transient dichroism with a recovery of the initial isotropic state in less than 1 ps, overcoming the speed bottleneck caused by slower (electron–phonon and phonon–phonon) relaxation processes. Our results pave the way to ultrafast dichroic devices for high-speed modulation of light polarization.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Ultrafast optical dichroism in a Au metasurface.
Fig. 2: Theoretical modelling.
Fig. 3: Broadband ultrafast dichroic transmittance.
Fig. 4: Symmetry-breaking window.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Vasa, P., Ropers, C., Pomraenke, R. & Lienau, C. Ultra-fast nano-optics. Laser Photon. Rev. 3, 483–507 (2009).

    Article  ADS  Google Scholar 

  2. Makarov, S. V. et al. Light-induced tuning and reconfiguration of nanophotonic structures. Laser Photon. Rev. 11, 1700108 (2017).

    Article  ADS  Google Scholar 

  3. Neshev, D. N. & Aharonovich, I. Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl. 7, 58 (2018).

    Article  ADS  Google Scholar 

  4. Ren, M., Cai, W. & Xu, J. Tailorable dynamics in nonlinear optical metasurfaces. Adv. Mater. 32, 1806317 (2019).

    Article  Google Scholar 

  5. Brongersma, M., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    Article  ADS  Google Scholar 

  6. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  7. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  8. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article  Google Scholar 

  9. Phan, T. et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl. 8, 48 (2019).

    Article  ADS  Google Scholar 

  10. Liu, J. G., Zhang, H., Link, S. & Nordlander, P. Relaxation of plasmon-induced hot carriers. ACS Photon. 5, 2584–2595 (2018).

    Article  Google Scholar 

  11. Wang, X., Guillet, Y., Selvakannan, P. R., Remita, H. & Palpant, B. Broadband spectral signature of the ultrafast transient optical response of gold nanorods. J. Phys. Chem. C 119, 7416–7427 (2015).

    Article  Google Scholar 

  12. Baida, H. et al. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance. Phys. Rev. Lett. 107, 057402 (2011).

    Article  ADS  Google Scholar 

  13. Della Valle, G., Conforti, M., Longhi, S., Cerullo, G. & Brida, D. Real-time optical mapping of the dynamics of nonthermal electrons in thin gold films. Phys. Rev. B 15, 155139 (2012).

    Article  Google Scholar 

  14. Sun, C.-K., Vallée, F., Acioli, L. H., Ippen, E. P. & Fujimoto, J. G. Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B 50, 15337 (1994).

    Article  ADS  Google Scholar 

  15. Shcherbakov, M. R. et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett. 15, 6985–6990 (2015).

    Article  ADS  Google Scholar 

  16. Della Valle, G. et al. Nonlinear anisotropic dielectric metasurfaces for ultrafast nanophotonics. ACS Photon. 4, 2129–2136 (2017).

    Article  Google Scholar 

  17. Yang, Y. et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photon. 11, 390–396 (2017).

    Article  ADS  Google Scholar 

  18. Nicholls, L. H. et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat. Photon. 11, 628–633 (2017).

    Article  ADS  Google Scholar 

  19. Rudenko, A., Ladutenko, K., Makarov, S. & Itina, T. E. Photogenerated free carrier-induced symmetry breaking in spherical silicon nanoparticle. Adv. Opt. Mater. 6, 1701153 (2018).

    Article  Google Scholar 

  20. Nicholls, L. H. et al. Designer photonic dynamics by using non-uniform electron temperature distribution for on-demand all-optical switching times. Nat. Commun. 10, 2967 (2019).

    Article  ADS  Google Scholar 

  21. Sivan, Y. & Spector, M. Ultrafast dynamics of optically-induced heat gratings in metals. ACS Photon. https://doi.org/10.1021/acsphotonics.0c00224 (2020).

  22. Zavelani-Rossi, M. et al. Transient optical response of a single gold nanoantenna: the role of plasmon detuning. ACS Photon. 2, 521–529 (2015).

    Article  Google Scholar 

  23. Gaspari, R. et al. Quasi-static resonances in the visible spectrum from all-dielectric intermediate band semiconductor nanocrystals. Nano Lett. 17, 7691–7695 (2017).

    Article  ADS  Google Scholar 

  24. Block, A. et al. Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy. Sci. Adv. 5, eaav8965 (2019).

    Article  ADS  Google Scholar 

  25. Kanavin, A. P. et al. Heat transport in metals irradiated by ultrashort laser pulses. Phys. Rev. B 57, 698–703 (1998).

    Article  Google Scholar 

  26. Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014).

    Article  Google Scholar 

  27. Besteiro, L. V., Kong, X.-T., Wang, Z., Hartland, G. & Govorov, A. O. Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: quantum and classical mechanisms. ACS Photon. 4, 2759–2781 (2017).

    Article  Google Scholar 

  28. Besteiro, L. V. et al. The fast and the furious: ultrafast hot electrons in plasmonic metastructures. Size and structure matter. Nano Today 27, 120 (2019).

    Article  Google Scholar 

  29. Dietzek, B., Pascher, T., Sundström, V. & Yartsev, A. Appearance of coherent artifact signals in femtosecond transient absorption spectroscopy in dependence on detector design. Laser Phys. Lett. 4, 38 (2007).

    Article  ADS  Google Scholar 

  30. Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).

    Article  ADS  Google Scholar 

  31. Conforti, M. & Della Valle, G. Derivation of third-order nonlinear susceptibility of thin metal films as a delayed optical response. Phys. Rev. B 85, 245423 (2012).

    Article  ADS  Google Scholar 

  32. Hou, X., Djellali, N. & Palpant, B. Absorption of ultrashort laser pulses by plasmonic nanoparticles: not necessarily what you might think. ACS Photon. 5, 3856–3863 (2018).

    Article  Google Scholar 

  33. Yurkevich, A. A., Ashitkov, S. I. & Agranat, M. B. Permittivity of gold with a strongly excited electronic subsystem. Phys. Plasmas 24, 113106 (2017).

    Article  ADS  Google Scholar 

  34. Brown, A. M. et al. Experimental and ab initio ultrafast carrier dynamics in plasmonic nanoparticles. Phys. Rev. Lett. 118, 087401 (2017).

    Article  ADS  Google Scholar 

  35. Rosei, R., Antonangeli, F. & Grassano, U. M. d bands position and width in gold from very low temperature thermomodulation measurements. Surf. Sci. 37, 689–699 (1973).

    Article  ADS  Google Scholar 

  36. Christensen, N. E. & Seraphin, B. O. Relativistic band calculation and the optical properties of gold. Phys. Rev. B 4, 3321–3344 (1971).

    Article  ADS  Google Scholar 

  37. Etchegoin, P. G., Le Ru, E. & Meyer, M. An analytic model for the optical properties of gold. J. Chem. Phys. 125, 164705 (2006).

    Article  ADS  Google Scholar 

  38. Johnson, P. B. & Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).

    Article  ADS  Google Scholar 

  39. Polli, D., Lüer, L. & Cerullo, G. High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics. Rev. Sci. Instrum. 78, 103108 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from Graphene FET Flagship Core Project 3 (grant no. 881603). G.D.V. and G.C. acknowledge support from the project METAFAST-899673-FETOPEN-H2020. G.D.V. and A.S. acknowledge support from the Italian MIUR under PRIN grant no. 2015WTW7J3. P.N. acknowledges support from the Robert A. Welch Foundation (grant no. C-1222).

Author information

Authors and Affiliations

Authors

Contributions

G.D.V. and G.C. conceived and designed the experiment. A.T., S.F. and R.P.Z. manufactured the samples and performed the static measurements. A.S., A.A., P.N. and G.D.V. developed the theory and designed the structures. A.S. performed the numerical simulations. M.M. performed the pump–probe experiment. G.C., R.P.Z. and P.L. supervised the experimental work. G.D.V., A.A. and A.S. wrote the first draft of the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Alessandro Alabastri or Giuseppe Della Valle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Discussion (eight sections I–VIII), Table 1 and refs. 1–41.

Source data

Source Data Fig. 1

Source data for Fig. 1b.

Source Data Fig. 2

Source data for Fig. 2e–h.

Source Data Fig. 4

Source data for all six panels of Fig. 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schirato, A., Maiuri, M., Toma, A. et al. Transient optical symmetry breaking for ultrafast broadband dichroism in plasmonic metasurfaces. Nat. Photonics 14, 723–727 (2020). https://doi.org/10.1038/s41566-020-00702-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-00702-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing