Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate


Increasing the modulation speed of semiconductor lasers has attracted much attention from the viewpoint of both physics and the applications of lasers. Here we propose a membrane distributed reflector laser on a low-refractive-index and high-thermal-conductivity silicon carbide substrate that overcomes the modulation bandwidth limit. The laser features a high modulation efficiency because of its large optical confinement in the active region and small differential gain reduction at a high injection current density. We achieve a 42 GHz relaxation oscillation frequency by using a laser with a 50-μm-long active region. The cavity, designed to have a short photon lifetime, suppresses the damping effect while keeping the threshold carrier density low, resulting in a 60 GHz intrinsic 3 dB bandwidth (f3dB). By employing the photon–photon resonance at 95 GHz due to optical feedback from an integrated output waveguide, we achieve an f3dB of 108 GHz and demonstrate 256 Gbit s−1 four-level pulse-amplitude modulations with a 475 fJ bit−1 energy cost of the direct-current electrical input.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamentals of conventional DMLs and membrane DR lasers.
Fig. 2: Calculated laser characteristics of membrane lasers on SiC.
Fig. 3: Static lasing characteristics without using PPR.
Fig. 4: Small-signal modulation characteristics without using PPR.
Fig. 5: Device characteristics with using PPR.
Fig. 6: BER performance.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.


  1. Chen, J. et al. An energy efficient 56 Gbps PAM-4 VCSEL transmitter enabled by a 100 Gbps driver in 0.25 μm InP DHBT technology. J. Lightwave Technol. 34, 4954–4964 (2016).

    Article  ADS  Google Scholar 

  2. Sasada, N. et al. Wide-temperature-range (25 °C to 80 °C) 53-GBaud PAM4 (106-Gb/s) operation of 1.3-μm directly modulated DFB lasers for 10-km transmission. J. Lightwave Technol. 37, 1686–1689 (2019).

    Article  ADS  Google Scholar 

  3. Uomi, K., Sasaki, S., Tsuchiya, T., Nakano, H. & Chinone, N. Ultralow chirp and high-speed 1.55 μm multiquantum well λ/4-shifted DFB lasers. IEEE Photon. Technol. Lett. 2, 229–230 (1990).

    Article  ADS  Google Scholar 

  4. Morton, P. A. et al. 25 GHz bandwidth 1.55 μm GaInAsP p-doped strained multiquantum-well lasers. Electron. Lett. 28, 2156–2157 (1992).

    Article  ADS  Google Scholar 

  5. Uomi, K., Aoki, M., Tsuchiya, T. & Takai, A. Dependence of high-speed properties on the number of quantum wells in 1.55 μm InGaAs-InGaAsP MQW λ/4-shifted DFB lasers. IEEE J. Quantum Electron. 29, 355–360 (1993).

    Article  ADS  Google Scholar 

  6. Kito, M., Otsuka, N., Ishino, M., Fujihara, K. & Matsui, Y. Enhanced relaxation oscillation frequency of 1.3 μm strained-layer multiquantum well lasers. IEEE Photon. Technol. Lett. 6, 690–693 (1994).

    Article  ADS  Google Scholar 

  7. Matsui, Y., Murai, H., Arahira, S., Ogawa, Y. & Suzuki, A. Enhanced modulation bandwidth for strain-compensated InGaAlAs–InGaAsP MQW lasers. IEEE J. Quantum Electron. 34, 1970–1978 (1998).

    Article  ADS  Google Scholar 

  8. Nakahara, K. et al. 12.5-Gb/s direct modulation up to 115 °C in 1.3-μm InGaAlAs-MQW RWG DFB lasers with notch-free grating structure. J. Lightwave Technol. 22, 159–165 (2004).

    Article  ADS  Google Scholar 

  9. Nakahara, K. et al. 40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers. IEEE Photon. Technol. Lett. 19, 1436–1438 (2007).

    Article  ADS  Google Scholar 

  10. Otsubo, K. et al. 1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation. IEEE J. Sel. Top. Quantum Electron. 15, 687–693 (2009).

    Article  ADS  Google Scholar 

  11. Yamamoto, T. et al. Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure. In 22nd IEEE International Semiconductor Laser Conference ThB3 (IEEE, 2010).

  12. Kobayashi, W. et al. 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-Based DFB laser with a ridge waveguide structure. IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).

    Article  ADS  Google Scholar 

  13. Nakahara, K. et al. Direct modulation at 56 and 50 Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers. IEEE Photon.Technol. Lett. 27, 534–536 (2015).

    Article  ADS  Google Scholar 

  14. Matsui, Y. et al. 28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB laser. J. Lightwave Technol. 34, 2677–2683 (2016).

    Article  ADS  Google Scholar 

  15. Nishi, H. et al. Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate. Opt. Express 24, 18346–18352 (2016).

    Article  ADS  Google Scholar 

  16. Kanazawa, S. et al. 214-Gb/s 4-PAM operation of flip-chip interconnection EADFB laser module. J. Lightwave Technol. 35, 418–422 (2017).

    Article  ADS  Google Scholar 

  17. Ozolins et al. 100 GHz externally modulated laser for optical interconnects. J. Lightwave Technol. 35, 1174–1179 (2017).

    Article  ADS  Google Scholar 

  18. Estaran, J. M. et al. 140/180/204-GBaud OOK transceiver for inter- and intra-data center connectivity. J. Lightwave Technol. 37, 178–187 (2019).

    Article  ADS  Google Scholar 

  19. Lange, S. et al. 100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach–Zehnder modulator. J. Lightwave Technol. 36, 97–102 (2017).

    Article  ADS  Google Scholar 

  20. Baeuerle, B. et al. Reduced equalization needs of 100 GHz bandwidth plasmonic modulators. J. Lightwave Technol. 37, 2050–2057 (2019).

    Article  ADS  Google Scholar 

  21. Ogiso, Y. et al. Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure. J. Lightwave Technol. 35, 1450–1455 (2017).

    Article  ADS  Google Scholar 

  22. Coldren, L. A., Corzine, S. W. & Mashanovitch, M. L. Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

  23. Tucker, R. S., Wiesenfeld, J. M., Downey, P. M. & Bowers, J. E. Propagation delays and transition times in pulse-modulated semiconductor lasers. Appl. Phys. Lett. 48, 1707–1709 (1986).

    Article  ADS  Google Scholar 

  24. Kuchta, D. M. et al. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link. J. Lightwave Technol. 27, 577–580 (2015).

    Google Scholar 

  25. Kjebon, O. et al. 30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength. Electron. Lett. 33, 488–489 (1997).

    Article  ADS  Google Scholar 

  26. Bach, L. et al. Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design. Electron. Lett. 39, 1592–1593 (2003).

    Article  ADS  Google Scholar 

  27. Troppenz, U. et al. 40 Gb/s directly modulated InGaAsP passive feedback DFB laser. In 32nd European Conference on Optical Communication Th4.5.5 (IEEE, 2006).

  28. Kreissl, J. et al. Up to 40-Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL). IEEE Photon. Technol. Lett. 24, 362–364 (2012).

    Article  ADS  Google Scholar 

  29. Dalir, H. & Koyama, F. High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance. Appl. Phys. Express 7, 022102 (2014).

    Article  ADS  Google Scholar 

  30. Abbasi, A. et al. Direct and electroabsorption modulation of a III–V-on-silicon DFB laser at 56 Gb/s. IEEE J. Sel. Top. Quantum Electron. 23, 1501307 (2017).

    Article  Google Scholar 

  31. Matsui, Y. et al. 55 GHz bandwidth distributed reflector laser. J. Lightwave Technol. 35, 397–403 (2017).

    Article  ADS  Google Scholar 

  32. Matsuo, S. & Kakitsuka, T. Low-operating-energy directly modulated lasers for short-distance optical interconnects. Adv. Opt. Photon. 10, 567–643 (2018).

    Article  Google Scholar 

  33. Kimoto, T. & Cooper, J. A. Fundamentals of Silicon Carbide Technology (River, 2018)

  34. Xu, C. et al. Temperature dependence of refractive indices for 4H- and 6H-SiC. J. Appl. Phys. 115, 113501 (2014).

    Article  ADS  Google Scholar 

  35. Nakahara, K. et al. 1.3 μm InGaAlAs asymmetric corrugationpitch-modulated DFB lasers with high mask margin at 28 Gbit/s. Electron. Lett. 50, 947–948 (2014).

    Article  ADS  Google Scholar 

  36. Diamantopoulos, N. P. et al. On the complexity reduction of the second-order Volterra nonlinear equalizer for IM/DD systems. J. Lightwave Technol. 37, 1214–1224 (2019).

    Article  ADS  Google Scholar 

  37. IEEE Standard for Ethernet—Amendment 10: Media Access Control Parameters, Physical Layers, and Management, Parameters for 200 Gb/s and 400 Gb/s Operation Standard 802.3bs (IEEE, 2017).

  38. Forward Error Correction for High Bit-Rate DWDM Submarine Systems ITU-T Recommendation G.975.1 (ITU, 2004).

  39. Diamantopoulos, N. P. et al. Amplifierless PAM-4/PAM-8 transmissions in O-band using a directly modulated laser for optical data-center interconnects. Opt. Lett. 44, 9–12 (2019).

    Article  ADS  Google Scholar 

  40. Fujii, T. et al. 1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate. In 42nd European Conference on Optical Communication Th.3.A.2 (IEEE, 2016).

  41. Nishi, H. et al. Monolithic integration of InP wire and SiOx waveguides on Si platform. IEEE Photon. J. 7, 4900308 (2015).

    Article  Google Scholar 

  42. FIMMWAVE version 6.6.0 (Photon Design, 2018).

  43. LASTIP, PICS3D Fabry-Perot Edition version 2019 (Crosslight Software, 2019).

Download references


We thank Y. Shouji, Y. Yokoyama, M. Hosoya, K. Ishibashi, J. Asaoka, and Y. Kawaguchi for assistance with device fabrication. We also thank Y. Maeda, T. Aihara and H. Fukuda for technical support with the measurements and K. Nozaki, H. Yamazaki and M. Nagatani for lending us the measurement equipment.

Author information

Authors and Affiliations



S.Y. calculated, designed, fabricated and measured the devices and prepared the manuscript. N.-P.D. performed the digital signal processing for the BER evaluation and assisted in the large-signal characteristic measurements. H.N. assisted in the small-signal and large-signal characteristic measurements. R.N. helped to calculate the thermal properties and discussed the design and fabrication processes. T.F. performed the epitaxial growth of the group III–V semiconductor layer. K.T. assisted in the fabrication processes and analysis of the small-signal responses. T.H. assisted in the calculation of the optical confinement factor. T. Tsurugaya assisted in the calculation of the thermal properties. H.T and S.K. assisted in the large-signal characteristic measurements. T.K. assisted in the calculations of the thermal properties and grating design. T. Tsuchizawa contributed to the fabrication of the bonding layer. F.K. discussed the experimental results related to PPR. S.M. designed and discussed the fabrication processes and measurement results, supervised the project and assisted with revising the manuscript.

Corresponding author

Correspondence to Suguru Yamaoka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Fig. 1, and description of the experimental set-up.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaoka, S., Diamantopoulos, NP., Nishi, H. et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nat. Photonics 15, 28–35 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing